
User Guide and Reference Manual
Welcome to the Bot Libre User Guide and Reference Manual. This goal of this document is to provide an overview of the Bot

Libre platform and its features.

Table of Content
This user guide is split into several sections for Web, Mobile, Social Media, and Scripting.

Overview

Web

• Sign Up
• Sign In
• Browsing
• Searching
• Creating
• Bots
• Avatars
• Deep Learning & Analytics
• Scripts
• Live Chat
• Forums
• Graphics
• Workspaces
• Embedding
• SDK
• Web API
• Speech API

Admin Console

• Users
• Avatar
• Voice
• Learning & Settings
• Training & Chat Logs
• Scripts
• Google
• Wolfram Alpha
• Timers
• Web
• Knowledge
• Log
• Analytics

Social Media

• Twitter
• Facebook
• Skype
• Telegram
• Kik
• WeChat
• Slack
• Email
• SMS
• IRC

IOT

• Alexa
• Google Assistant

Mobile

• Android

• iOS
• SDK

Training & Scripting

• Response List
• Self
• AIML
• Regular Expressions (Regex)

Overview

About
Bot Libre is a free open platform for developing and hosting bots for the web, mobile, and social media. The Bot Libre platform also

provides development and hosting for deep learning analytics, avatars, live chat, chat rooms, forums, scripts, and other content.

Bot Libre provides several components:

• Website - A website and web platform that lets you create and host bots and other content.
• Apps - Bot Libre provides several apps for Android and iOS , including bot, chat, and virtual assistant apps.
• SDK - The Bot Libre Software Development Kit (SDK) is an open source code library that you can use to develop your own

website, mobile app, or desktop application.
• Web API - The Bot Libre web API provides an XML and JSON HTTP REST API that lets you access and integrate Bot Libre's

services from any programming language or environment.
• AI Engine - The Bot Libre AI Engine is an open source project for bots and advanced artificial intelligence developed in Java

and hosted on GitHub

Bot Libre is hosted by Paphus Solutions, a Canadian Corporation that specializes in intelligence automation products and

services.Bot Libre is developed by Paphus, their partners, and the Bot Libre open source community.

Paphus Solutions also provides commercial bot hosting on Bot Libre for Business, as well as bot and app development services.

Dedicated and private hosting is also available, and private licensing is provided through the Bot Libre Enterprise Bot Platform.

Architecture
Bot Libre provides a web based architecture that provides chat and bot services to many different clients. Bot Libre also implements

many webhook APIs for integrating with other services, and can access web services and other online services.

For the web, Bot Libre provides an embed tool that automatically generates the HTML and JavaScript code to embed your bot or live

chat your website. Bot Libre also provides an open source JavaScript SDK that gives you complete control to customize your

interface and user experience. Bot Libre provides a web API that enables you to access your bots and Bot Libre's services from any

programming language and environment.

On mobile, Bot Libre provides an open source SDK for Android and iOS. The SDK includes example apps, and connection and GUI

code to make building your own bot or chat app easy. The SDK provides virtual assistant commands for performing actions on

phones and devices.

Bot Libre integrates with many different social media platforms include Twitter, Facebook, Telegram, Skype, Kik, WeChat, and Slack.

Bot Libre implements their APIs and provides https webhooks to allow real-time messaging, you only need to authorise and connect

your bot. Bot Libre also supports email automation, IRC, and SMS text messaging through Twilio.

Bot Libre bots can be trained without any programming, using text questions and answers, or learning from chat logs, live chat, or

Twitter. Bot Libre supports tagging responses with keywords, topics, context, and other meta data to automatically match questions

to responses. Bot Libre also supports patterns, templates, and scripting using Self (a JavaScript dialect), and AIML.

Bot Libre's scripting language Self allows access to XML and JSON web services, and HTML scraping. Bot Libre also provides

several classes to access web services such as Google Calendar, WikiData, Wiktionary, Twitter, Facebook, Telegram, Email, Twilio,

and more. Bot Libre bots each have their own object database to easily store data and information, and import JSON and XML data.

Sign Up
Overview
You can browse and chat with public bots anonymously, but to create your own bot you must create an account by clicking Sign Up.

Creating an account is free and easy. To create an account you only need to enter a unique user ID and a password. Your name and

email are optional, if you wish to remain anonymous, you may do so.

Your user id must be a unique name such as jim2017, do not user an email address, spaces, or special characters. It is

recommended to enter an email address, then you can sign in also using the email address, and can reset your password if required.

Properties

Properties Required Description

User Id  Enter a unique user id (no spaces, alpha numeric, visible to other users).

Password  Enter a secure password.

Retype Password  Confirm password.

Password Hint Enter a personal hint in case you forget your password.

Name Enter your real name (visible to other users if 'Show Name' is selected).

Email Enter your email addrress (not visible to other users, recommended, required for password reset).

Website Enter your business or personal website (visible to other users).

Bio Enter anything about you (HTML, visible to other users).

Accept Terms  You must accept our terms of service.

Facebook

• You can also sign up using your Facebook account.

See Also

• How to create your own chat bot in 10 Clicks

Sign in
Overview
You can sign in from the home page, if you don't have an account you can create one, it is free, and only requires a user

id/password.

You can sign in using your user id, or your email address if you entered one when signing up. If you forgot your password you will be

given a password reset link after one failed sign in attempt. You must have entered an email address when signing up to be able to

reset your password.

Properties

Properties Required Description

User Id(or email)  Enter a unique user id (no spaces, alpha numeric, visible to other users).

Password  Enter a secure password.

Facebook

• You can also sign in using your Facebook account.

See Also

• How to create your own chat bot in 10 Clicks

Browsing
Overview
You can browse the set of bots and categories from the Browse menu.

You can create your own chat bot from the 'New Bot' menu, or browse all published bots.

To create a new bot you must first sign in.

Featured Bots

Properties

Properties Description

Categories A category lets you classify your bot.

Featured View featured and demostration bots.

New Category Create a new category.

Search Searching by categories, tags, name, display, restrict, and sort.

New Bot Create your own bot.

New Link Add a link to an external bot or website to the bot directory.

See Also

• Browse Bots

Searching
Overview
You can search the open bot directory from the Search menu, or search the website from the Google site search link in the top menu

or footer.

Only public bots are listed in our browse directory. If your bot is private, you can find it from selecting 'my bots' or 'private' from

search. You can also mark your bot as hidden to have it not searchable.

Properties

Properties Description

Public Bots Show all public bots created by all users.

Private Bots Show all private bots this user has access to.

My Bots Show all bots you are the administrator for.

Categories Filter by a comma separated list of category names.

Tags Filter by a comma separated list of tag names.

Name Filter by any name containing the text.

Site Search
The Site Search uses Google site search to search all webpages in the website.

See Also

• Search Bots
• Site Search

Creating
Overview
To create a new bot click Create from the top banner. You can give your bot a name and description. The name must be unique and

can contain spaces, special characters, and is case sensitive.

The bots you create on Bot Libre belong to you. When you create a bot you can specify the license you wish to share it under. If you

allow other users to 'fork' your bot, you release your bots content to them under your bot's license. Also, if your bot learns from the

users it interacts with, they must understand they are releasing their interactions under your bot's license.

You can create a bot from the default template, or select one of the other predefined templates. Your bot will start as a clone of the

template bot, and replicate its entire memory (brain). You can also allow your bot to be 'forked' and used as a template to other bots,

or you can browse other public bots and choose to fork your bot from them.

You can add tags to your bot, to help classify it, and help other users find it. Some relevant tags include 'fun', 'business', 'help', and

'avatar'. The tags are entered as a comma separated list.

You can create either a public bot that will be accessible by other users, or a private bot that will be accessible only by you. You can

control the users that can access and administer your bot.

You can choose if you want your bot to learn as it interacts with other users. If you disable learning, then your bot will only learn from

its administrator when you 'correct' it, from chat logs you upload from the 'Chat Logs' page under 'Admin', or from AIML and Self

scripts you add from the 'Scripts' page. Caution should be used in allowing learning, as other users may teach your bot offensive

responses. Bot Libre provides a profanity filter, but it cannot catch everything. If you are creating a bot for business, such as for

customer service, then you should disable learning.

Properties

Properties Description

Bot Name Enter a bot name.

Template Type of bot to create.

Description Optional description.

Details You can enter optional additional information.

Disclaimer You can enter optional legal information.

License Optional license to release the bot and all of its content under.

Website If this bot has its own website, you can enter it here.

Website Subdomain (or domain) You can choose a subdomain to host your bot's own website, or give a domain that you have registered and forward to this server.

Categories Comma separated list of categories to categorize the bot under.

Tags Optional comma separated list of tags to tag the bot under.

Private A private bot is not visible to the public, only to the user and users grant access.

Hidden A hidden bot is not displayed in the browse directory.

Access Mode Define who can access this bot.

Fork Access Mode Define who can fork (copy) this bot.

Content Rating Rate the bot.

Ad Code You can display ads on your bot's pages.

See Also

• How to create your own chat bot in 10 clicks

Bots
Overview
A chat bot, or chatbot is a software program that responds to questions in natural language (such as English, French, etc.).

Chat bots can be used for many purposes. Chat bots can be used for a business to help users, provider customer service, or

promote a product. Chat bots can be used for fun, as a friend to chat with, even a girlfriend or boyfriend. Chats bot can also be used

for research, knowledge and education.

There are many different types of chat bots, such as:

• Virtual Agents
• Chatterbots
• Knowledge bots
• Twitterbots
• AI bots

Most chat bots are web based, but there are also chat bots that run on Twitter, email, Facebook, Telegram, Slack, Skype, ICQ, IM,

Second Life, and a growing number of Android, iOS and mobile chat bots.

Bot Libre's goal is to support chat bots running on as many different services as we can support. We currently have integrated

support for connecting your bot to the web, Twitter, Facebook, Telegram, Slack, SMS, email, IRC, Android, iOS, and other platforms

through our apps, API and SDK.

Chat bots can be developed using many different techniques and programming models.

Some common techniques include:

• Question/response matching
• Keyword and topic matching
• Sequential scripting
• Text search and processing (such as AIML)
• Language parsing and state machines (such as Self)
• Direct programming (PHP, Java, LISP)
• Machine learning (artificial intelligence)

Bot Libre understands that no single method or technique is best for all types of bots, or all types of situation. Bot Libre provides a

heterogeneous environment of different techniques including, automatic question/responses matching, keyword and topic matching,

AIML, Self scripting, and machine learning and comprehension.

See Also

• How to create your own chat bot in 10 Clicks

Avatars
Overview
The avatar tab lets you choose your bot's avatar. An avatar is the physical representation of your bot, and can include images, video,

audio, and animation. You can choose an avatar from our open avatar directory, or create your own.

Creating
You can create your own avatar from the browse avatars page. To create an avatar, just give it a name, description, and category to

categorize it under. You can either make the avatar private and choose who can access it, or make it public and accessible by

anyone. You can also choose what license you wish to release its content under.

Properties

Properties Description

Avatar Name Enter an Avatar name.

Description Optional description.

Details You can enter optional additional information.

Disclaimer You can enter optional legal information.

License Optional license to release the avatar and all of its content under.

Website If this avatar has its own website, you can enter it here.

Categories Comma separated list of categories to categorize the avatar under.

Tags Optional comma separated list of tags to tag the avatar under.

Private A private avatar is not visible to the public, only to the user and users grant access.

Hidden A hidden avatar is not displayed in the browse directory.

Access Mode Define who can access this avatar.

Fork Access Mode Define who can fork(copy) this avatar.

Content Rating Rate the avatar.

Ad Code You can display ads on your avatar's pages.

Avatar Editor
The avatar editor allows you to upload or import images, video, and audio files for your avatar, and tag them with emotions, actions,

and poses. You can add as many images, videos, or audio as you want, and they will be randomly selected if not tagged. If tagged,

they will only be used when the bot expresses the tagged emotion, action, or pose. You should have at least a 'talking' pose tagged,

this will be displayed when the bot is talking.

To edit the avatar, click on the Editor button. The avatar editor lets you import video, audio, and image files. You can associate each

media with an emotion, action, or pose. For example if you have a video that makes the avatar talk, you would associate the pose for

the video to talking. The emotions let the avatar express different emotions, and will let the bot using the avatar express itself. There

are a fixed set of emotions, but you can create any actions and poses that you wish. You can have multiple media for a emotions,

action, or pose, and one will be chosen at random. For actions, and poses, you can have an audio element in addition to a video

element. Audio can be used to make your avatar perform actions such as laugh, or used as background music or noise for a pose.

Toolbar Menu Section

Icon Property Name Description

Save Save the current changes.

Select Select all media.

Delete Delete the selected media.

Upload Upload images, video, or sound files for the avatar.

Toolbar Background Section

Icon Property Name Description

Upload Upload a background image to overlay video on (this can reduce the video flicker).

Clear Clear the background image.

Media Section

Property Name Description

Emotions Comma separated list of emotions to trigger the media.

Actions Comma separated list of actions to trigger the media.

Poses Comma separated list of poses to trigger the media.

Embed Avatar
The avatar embed page allows you test the avatar and generate embedding code to add the avatar to your own website.

Properties

Properties Description

Speech The text for the avatar to speak.

Guest User Guest user to connect as, you need to add this user to your avatar's users (do not use your own user id).

Password Password for guest user (not secure).

Token Token for guest user (this will expire, use a guest user/password instead).

Properties Description

Server Voice More than 30 server voices.

Voice Modifier Several voice modifier.

Native Voice The name of the native voice. A native browser voice can be used on Chrome or browses that support the HTML Speech API.

Responsive Voice Use the third party voice API from ResponsiveVoice.

Language The language code for the native voice.

Width The width (in pixels) of the avatar box.

Height The height (in pixels) of the avatar box.

Background Color The background color to use.

Emotion Emotion for avatar to express.

Action Action for avatar to perform.

Pose Pose for avatar to hold.

See Also

• How to add a 3D avatar to your website or blog

Deep Learning & Analytics
Overview
An analytic is a neural network, deep learning model, or analytical model that can be used to predict or classfiy data such as images,

audio, text, and more.

The analytics library provides many open source examples of analytics for image classifcation and other usages. You can create your

own analytic and upload a binary network file such as a python .pb file that represents your model.

Creating
You can create your own analytic from the browse analytics page. To create a analytic, just give it a name, description, and category

to categorize it under. You can either make the analytic private and choose who can access it, or make it public and accessible by

anyone.

Properties

Properties Description

Properties Description

Analytic Name Enter a analytic name.

Description Optional description.

Details You can enter optional additional information.

Disclaimer You can enter optional legal information.

License Optional license to release the analytic and all of its content under.

Website If this analytic has its own website, you can enter it here.

Website Subdomain (or domain) You can choose a subdomain to host your analytic's own website, or give a domain that you have registered and forward to this server.

Categories Comma separated list of categories to categorize the analytic under.

Tags Optional comma separated list of tags to tag the analytic under.

Private A private analytic is not visible to the public, only to the user and users grant access.

Hidden A hidden analytic is not displayed in the browse directory.

Access Mode Define who can access this analytic.

Fork Access Mode Define who can fork(copy) this analytic.

Content Rating Rate the analytic.

Ad Code You can display ads on your analytic's pages.

Analytic Network
The analytic network editor allows you to configure and to upload or import the required files for both graph and labels for your

analytic. Currently the analytic network binary file must be a python Tensorflow .pb file. Support for other network types will be added

in the future. The labels file is a text file that matches the binary network's output.

Network

Properties Description

Analytic Type Types of analytic (inception_v3, mobilenet_0.25, mobilenet_0.50, mobilenet_0.75, mobilenet_1.0)

Analytic Image Size Set the image size of the trained images

Analytic Feed The input name used while training the images

Analytic Fetch The output name used while training the images

Network (Buttons)

Icon Property Name Description

Save Save the current changes.

Upload Upload graph .pb file.

Download Download the current uploaded graph.

Delete Delete the uploaded graph.

Labels

Properties Description

Text Area Displaying the labels saved in the uploaded text file.

Labels (Buttons)

Icon Property Name Description

Save Save the current changes.

Upload Upload graph .pb file.

Download Download the current uploaded graph.

Analytic Repository
The Analytic Repository allows you to add a label and import images inside one of each label labels.

Labels

Icon Property Name Description

Delete Delete the selected label.

Add Add a label

Properties Description

Labels Select a label

Add Label

Properties Description

Add label Add a label to the list

Analytic Training
Training images.

Training Network

Properties Description

Start Training will start based on availability. This might take several hours.

See Also

• How to create your own deep learning neural network for image recognition without any programming
• Tensorflow
• Training your images

Scripts
Overview
A script is a program file that can be loaded into your bot to give it new responses or functions. Bot Libre support scripts written in

Self and AIML, as well as response list files.

The Bot Libre script library provides many open source examples scripts and data files in several different languages and formats.

The Bot Libre script library supports uploading scripts written in any language. You can even upload HTML, JavaScript, and css files

to host a website on Bot Libre.

Creating
You can create your own script from the browse script page. To create a script, just give it a name, description, and category to

categorize it under. You can either make the script private and choose who can access it, or make it public and accessible by

anyone.

Properties

Properties Description

Script Name Enter a script name.

Language Programming language or type of script.

Description Optional description.

Details You can enter optional additional information.

Disclaimer You can enter optional legal information.

License Optional license to release the script and all of its content under.

Website If this script has its own website, you can enter it here.

Website Subdomain (or domain) You can choose a subdomain to host your script's own website, or give a domain that you have registered and forward to this server.

Categories Comma separated list of categories to categorize the script under.

Tags Optional comma separated list of tags to tag the script under.

Private A private script is not visible to the public, only to the user and users grant access.

Hidden A hidden script is not displayed in the browse directory.

Access Mode Define who can access this script.

Fork Access Mode Define who can fork(copy) this script.

Content Rating Rate the script.

Ad Code You can display ads on your script's pages.

Editing Source

Button Description

Choose script action from menu.

Back to home of script source.

Save source.

Upload script

Download script.

Versions
View and administer the script's version history.

Button

Button Description

Choose script action from menu.

Back to home of script source.

Button Description

Permanently delete the script versions.

View the version source.

See Also

• Self
• AIML
• Introducing the Self Scripting Language
• Scripting your bot with AIML
• What classes are supported in Self

Live Chat
Overview
Live Chat allows you to create a chat channel that you can embed on your own website and service with your own live operators. You

can also add a bot to your channel to learn from your operators, and service requests when no operators are available.

Creating
You can create your own live chat channel from the browse live chat page. To create a live chat channel, just give it a name,

description, and category to categorize it under. You can either make the live chat channel private and choose who can access it, or

make it public and accessible by anyone.

Properties

Properties Description

Channel Name Enter a channel name.

Channel Type The channel can either be a chat room that allows multiple users to chat with each other, or one on one channels where users are queued to chat with an
administrator.

Description Optional description.

Details You can enter optional additional information.

Disclaimer You can enter optional legal information.

License Optional license to release the channel and all of its content under.

Website If this channel has its own website, you can enter it here.

Website Subdomain (or
domain)

You can choose a subdomain to host your channel's own website, or give a domain that you have registered and forward to this server.

Categories Comma separated list of categories to categorize the channel under.

Tags Optional comma separated list of tags to tag the channel under.

Private A private channel is not visible to the public, only to the user and users grant access.

Hidden A hidden channel is not displayed in the browse directory.

Access Mode Define who can access this channel.

Fork Access Mode Define who can fork(copy) this channel.

Properties Description

Content Rating Rate the channel.

Video Access Define who can broadcast video in this channel.

Audio Access Define who can broadcast audio in this channel.

Ad Code You can display ads on your channel's pages.

Embedding
You can embed your live chat channel or chat room on your own website or blog just by adding some simple html to your site. You

are free to embed your own channels for personal, or commercial purposes.

Properties

Properties Description

Subdomain (or domain) You can choose a subdomain to host your own chat website, or give a domain that you have registered and forward to this server's ip address.

Embedding Type Choose an embedding type.

Landing Page Choose a loading page.

Caption The text on the button or link.

Guest User Guest user to connect as.

Password Password for guest user (not secure).

Token Token for guest user.

Style Sheet The CSS style sheet or CSS to customize the page.

Banner HTML An HTML script or page to embed as the page banner.

Footer HTML An HTML script or page to embed as the page footer.

Width The width (in pixels) of the frame, window, or box.

Height The height (in pixels) of the frame, window, or box.

Offset The offset (in pixels) of the box from the side.

Location Choose a location side.

Color The color to use for the button or link.

Background Color The background color to use.

Prompt The text prompt to use in the input (default is 'You say')

Send The text for the send button (default is 'Send')

Ask for Contact Info Ask the user for their contact information before connecting.

Chat Log Show the chat log.

Online Users Show the online users.

Chat Bubble Print chat message in chat bubble.

Login Banner Choose if login banner should be displayed.

Facebook Login Choose if facebook login option should be provided.

Show Title Choose if the channel's title should be displayed.

Backlink Choose if a backlink to Bot Libre should be displayed (requires Bronse account).

Show Ads Choose if the channel's ad show be displayed.

Settings
The settings page lets you configure your channel including linking an automated chat bot agent to service your channel, and

configuring your welcome and status messages.

Messages

Properties Description

Welcome Message Welcome message for your bot.

Status Message Status message for your bot.

Automated Chat Bot Agent

Properties Description

Bot Choose the bot to monitor the channel from the list of your bot.

Bot Mode The bot can be configured in three different modes: Listen Only,Answer Only, or Answer and Listen, which define how the bot will participate in the conversation.

Email

Properties Description

Properties Description

Email Address Email Address.

User User name.

Password User password.

Protocol Protocol specifies interactions.

SSL Creates a secure connection.

Incoming Host Incoming host name.

Incoming Port Incoming port number.

Outgoing Host Outgoing host name.

Outgoing Port Outgoing port number.

Email Chat Log Topic

Send test email

Chat Logs
The chat logs tab allows you to monitor your channel.

Properties

Properties Description

Search Search type.

Duration Duration of time.

Filter Filter the results to only include messages containing the filter text.

Toolbar

Icon Property Name Description

Select Select all of the messages.

Delete Delete the selected messages.

Analytics
Theanalytics tab allows you to view your channel's analytics in the form of charts and tables. You can view your live chat channel

charts for a duration period of either the current week, current month, or all time by selecting a duration period from the duration drop

down select. You can group your channel's analytics either by day, week, or month by selecting a group from a group by drop down

select.

Properties

Properties Description

Duration Displays a graph for a given period of time. User can choose duration of the graph to be displayed for either week, month, or everything.

Group By Groups graph data either by day, week, or month.

Analytics Table
The analytics table displays your channel's analytics data. The data in the table is graphed in a chart above. You can view your

channel's analytics inside table by sorting it in either increasing or decreasing order by clicking on table column's title.

See Also

• Live Chat

Graphics
Overview
The graphics library let you upload and share image, video, and audio files.

Creating
You can create your own graphic from the browse graphic page. To create a graphic, just give it a name, description, and category to

categorize it under. You can either make the graphic private and choose who can access it, or make it public and accessible by

anyone.

Properties

Properties Description

Graphic's Name Enter a graphic name.

Description Optional description.

Details You can enter optional additional information.

Disclaimer You can enter optional legal information.

License Optional license to release the graphic and all of its content under.

Website If this graphic has its own website, you can enter it here.

Categories Comma separated list of categories to categorize the graphic under.

Tags Optional comma separated list of tags to tag the graphic under.

Private A private graphic is not visible to the public, only to the user and users grant access.

Hidden A hidden graphic is not displayed in the browse directory.

Access Mode Define who can access this graphic.

Fork Access Mode Define who can fork(copy) this graphic.

Content Rating Rate the graphic.

Ad Code You can display ads on your graphic's pages.

See Also

• Browse Graphics

Forums
Overview
You can browse Bot Libre's forums for How Tos, FAQs, and other useful information. You can also create your own forum, and

embed it on your own website.

Creating
You can create your own forum from the browse forum page. To create a forum, just give it a name, description, and category to

categorize it under. You can either make the forum private and choose who can access it, or make it public and accessible by

anyone.

Properties

Properties Description

Forum Name Enter a forum name.

Description Optional description.

Details You can enter optional additional information.

Disclaimer You can enter optional legal information.

License Optional license to release the forum and all of its content under.

Website If this forum has its own website, you can enter it here.

Website Subdomain (or domain) You can choose a subdomain to host your forum's own website, or give a domain that you have registered and forward to this server.

Categories Comma separated list of categories to categorize the forum under.

Tags Optional comma separated list of tags to tag the forum under.

Private A private forum is not visible to the public, only to the user and users grant access.

Hidden A hidden forum is not displayed in the browse directory.

Access Mode Define who can access this forum.

Fork Access Mode Define who can fork(copy) this forum.

Content Rating Rate the forum.

Post Mode Define who can post to this forum.

Post Reply Mode Define who can reply to posts in this forum.

Ad Code You can display ads on your forum's pages.

Embedding
You can embed your forum on your own website or blog just by adding some simple html to your site. You are free to embed your

own forums for personal, or commercial purposes.

Properties

Properties Description

Subdomain (or domain) You can choose a subdomain to host your own chat website, or give a domain that you have registered and forward to this server's ip address.

Embedding Type Choose an embedding type.

Caption The text on the button or link.

Guest User Guest user to connect as.

Password Password for guest user (not secure).

Token Token for guest user.

Properties Description

Style Sheet The CSS style sheet or CSS to customize the page.

Banner HTML An HTML script or page to embed as the page banner.

Footer HTML An HTML script or page to embed as the page footer.

Color The color to use for the button or link.

Background Color The background color to use.

Login Banner Choose if login banner should be displayed.

Facebook Login Choose if facebook login option should be provided.

Backlink Choose if a backlink to Bot Libre should be displayed (requires Bronse account).

Show Ads Choose if the forums's ad show be displayed.

See Also

• Browse Forums

Workspaces
Overview
A workspace is a directory or domain object that lets you group your content. You can create your own Workspace for your business,

school, or club to share bots and other content. As the admin of your workspace you can control who can access its content.

Creating
You can create your own workspace from the browse workspace page. To create a workspace, just give it a name, description, and

category to categorize it under. You can either make the workspace private and choose who can access it, or make it public and

accessible by anyone.

Properties

Properties Description

Workspace Name Enter a workspace name.

Description Optional description.

Details You can enter optional additional information.

Disclaimer You can enter optional legal information.

License Optional license to release the domain and all of its content under.

Website If this domain has its own website, you can enter it here.

Website Subdomain (or domain) You can choose a subdomain to host your workspace's own website, or give a domain that you have registered and forward to this server.

Categories Comma separated list of categories to categorize the workspace under.

Tags Optional comma separated list of tags to tag the workspace under.

Private A private workspace is not visible to the public, only to the user and users grant access.

Hidden A hidden workspace is not displayed in the browse directory.

Access Mode Define who can access this workspace.

Fork Access Mode Define who can fork(copy) this workspace.

Content Rating Rate the workspace.

Creation Mode Define who can create channels, forums, and bots in this workspace.

See Also

• Browse Workspaces

Embedding
Overview
You can embed your bot on your website from its Embed page by clicking on the 'Embed' button. You can embed your bot using

JavaScript or HTML, the Embed page provides 6 different embedding types, and many options. You can also create a website and

subdomain to host your bot, or link your own domain to your bot's webpage.

Properties

Properties Description

Subdomain (or domain) You can choose a subdomain to host your own bot's website, or give a domain that you have registered and forward to this server's ip address.

Embedding Type Choose an embedding type.

Style Sheet Choose the style sheet for the embedded chat.

Custom Style Sheet Custom css for the embedded chat style sheet.

Button Style Choose different button style for the embedded chat.

Location Choose a location side.

Language Choose a language for the text displayed in a embedded chat.

Ask for Contact Info Ask the user for their contact information before connecting.

Show Avatar Displays bot avatar in the embed chat.

Show Chat Log Displays chat log in the embed chat.

Show Advanced Info Shows advanced unfo for the embedding chat.

Caption The text on the button or link.

Greeting Optional greeting to display.

Farewell Optional farewell/disconnected message to display.

Guest User Guest user to connect as, you need to add this user to your bot's user's.

Password Password for guest user (not secure).

Token Token for guest user.

Style Sheet The CSS style sheet or CSS to customize the page.

Banner HTML An HTML script or page to embed as the page banner.

Footer HTML An HTML script or page to embed as the page footer.

Width The width (in pixels) of the frame, window, or box.

Height The height (in pixels) of the frame, window, or box.

Offset The offset (in pixels) of the box from the side.

Color The color to use for the button or link.

Background Color The background color to use.

Prompt The text prompt to use in the input (default is 'You say')

Send The text for the send button (default is 'Send')

Avatar Expandable Choose if the bot's avatar should be expandable.

Chat Bubble Print chat message in chat bubble (only for box chat).

Speak Choose if the bot's voice should be enabled.

Allow Speech Choose if the bot's voice should be allowed.

Allow Emotes Choose if emotes and actions should be allowed.

Allow Correction Choose if users should be allowed to correct the bot's responses.

Login Banner Choose if login banner should be displayed.

Facebook Login Choose if facebook login option should be provided.

Title Choose if bot's name should be displayed as the title header.

Properties Description

Backlink Choose if a backlink to Bot Libre should be displayed (requires Bronse account).

Show Ads Choose if the bot's ad show be displayed.

Show Menu Bar Choose if menu bar option should be displayed.

Show Max Button Choose if max button menu option should be displayed.

Show Language Choose if language menu option should be displayed

Show Send Image Choose if send image menu option should be displayed

Button Styles
Choose any of the 11 available button styles for the embed page. Simply select any button style from button style drop down menu.

Some of the buttons styles are shown below.

Chat Styles
Choose five different styles for their embedding by selecting a specific style sheet from Style Sheet drop down menu.

Chat Log Style

Social Chat Style

Chat Room Style

Blue Chat Style

Pink Chat Style

Custom Styles
Add your own custom style sheet for your embed. Simply select custom style from style sheet drop down menu. Then, enter the url

pointing to your custom style sheet inside custom style sheet input field.

See Also

• How to add a virtual agent to your website.
• Embedding your bot on your own website or blog

SDK
Overview
Bot Libre provides an open source JavaScript, Java, Android, and iOS SDK that lets you use any of Bot Libre's services on your own

website or mobile app.

See Also

• SDK
• Create your own bot app with the Bot Libre SDK.

Web API
Overview
In addition to being able to embed your chat bots on your own website, and access them from any Android device, you can also

access your chat bots through the Bot Libre web API. The web API gives you the advantage of having complete control of your bot's

client interface.

You can use the web API to access your bot from your own website through JavaScript, PHP or any other language. You can also

use the web API to create your own mobile application to access your bot, such as an Android or iOS application.

A web API, is a set of HTTP GET/POST URI's that allow sending and receiving of message data. When you browse a website, your

browser makes a series of HTTP GET/POST requests to URIs that return HTML content. In a web service the URIs return XML or

JSON data, instead of HTML content.

The Bot Libre web API provides three REST APIs in one. The first is a set of HTTP GET URIs that take FORM data, and return XML

data. The second set of API's take HTTP POST XML data, and return XML data. The third set of API's take HTTP POST JSON data,

and return JSON data.

Most applications would use the XML POST API, but some application may choose to use the FORM GET API because of its

simplicity. The APIs are identical other than their mechanism.

See Also

• The Bot Libre chat bot web API
• Web API Console
• Create your own bot app with the Bot Libre SDK

Speech API
Overview
The Bot Libre JavaScript SDK provides free dynamic access to all of Bot Libre's services including chat bots, live chat, chat rooms,

forums, and speech. The speech API for the SDK can be used in conjunction with chat bots, live chat, or on its own.

See Also

• The Bot Libre chat bot web API
• API Test
• Add Speech to your Website using the Bot Libre TTS JavaScript SDK
• Create your own bot app with the Bot Libre SDK

Users
Overview
The users tab allows you to add users, and administrators to your bot.

Toolbar

Administrators - Enter the user id of the user to add as an administrator.

Icon Property Name Description

Select Select all administrators.

Remove Remove all selected administrator.

Add Add the new administrator.

Users - Enter the user id of the user to add.

Icon Property Name Description

Select Select all users.

Remove Remove all selected user.

Add Add the new user.

See Also

• Users

Avatars
Overview
The avatars tab allows you to add new avatar image to your bot. New avatar changes can be viewed by clicking green 'Chat' button

from avatar's Info tab.

Toolbar

Icon Property Name Description

Edit Edit the avatar image. You can change avatar background imagae, and select different avatar emotions, actions, and poses

Test Test new avatar changes. You can observe new avatar image in a new browser window.

Save Save new avatar image changes.

Create Create new avatar image.

Input Dropdown
Change Avatar Select different avatar image from input dropdown.

Browse Link
Browse Avatar Browse all different avatar images from avatar's directory.

See Also

• Avatars

Voice
Overview
The voice tab allows you to select your bot's language and voice. You can use a server generated voice or native device voice. You

can use a native voice on Android and iOS mobile apps, or on Chrome or other web browsers that support the HTML Speech API.

This list of native voices depend on the platform and OS, and the devices configuration.

A server voice is consistent across all platforms. If you use a native voice, and the browser or platform does not support TTS, then

the server voice will be used as a fall back. If a native voice is set, and it is available it will be used, otherwise any voice for the

language will be used, otherwise the default native voice.

Properties

Properties Description

Server Voice Over 30 server generated voices in several languages.

Voice Modifier Choose a voice modifier.

Native Voice The name of the native voice. A native mobile device or browser voice can be used on Android, iOS, Chrome, and browsers that support the HTML Speech API.

Responsive Voice Use the third party voice API from Responsive Voice.

Language The language code for the native voice (i.e. en-US, fr, zh).

Test Testing/Reading the written sentence.

See Also

• Voice
• Add Speech to your Website using the Bot Libre TTS JavaScript SDK

Learning & Settings
Overview
The learning and settings tab allows you to configure how your bot learns and other settings. It gives several high level, and low level

settings that let you customize how your bot learns and thinks. This will influence how your bot interacts with users, how it responds,

how long its takes to respond, and how much memory it uses.

Learning Mode - The learning mode controls who your bot will learn responses from. When enabled your bot we learn every
response to its response as a new response in context. Be careful enabling learning for service bots, as users can train your bot to
have bad responses.

Correction Mode - The correction mode controls who can correct your bot's responses. Be careful enabling correction for service
bots, as users can train your bot to have bad responses.

Learning Rate - The learning rate is the % to increase a response's correctness when learning. Each time your bot learns a new
response to a question it will increase its correctness by this %. A response has a correctness from -100% to 100%. In conversation
mode a bot will use a response with a %50 correctness (by default). The default learning rate is 50%.

Script Timeout - The script timeout (in milliseconds) gives a limit to the amount of time for script processing. If a timeout occurs, the
bot will abort the script, and respond using response matching, or use a default response. This can be used to ensure the bot does
not take too long to give a response. The default is 10000 (10 seconds).

Response Timeout - The response timeout (in milliseconds) gives a limit to the amount of time the bot will search for a matching
response. When the bot does not know a response for a question it will search for similar questions that it does know a response to.
This can be used to ensure the bot does not take too long to give a response. Smaller values make the bot respond quicker, larger
values can help the bot find a better response. The default is 1000 (1 second).

Conversation Match - The conversation match % influences when the bot will use a response in a conversation. If the response's
correctness is less than the %, or for a response match, if the question's % match is less than the %, then the response will not be
used. If no responses match the %, then the bot will use a default response. The bot is in conversation mode for 1v1 conversations,
such as chat, privates, email, twitter mentions and direct messages. The default is 50%.

Discussion Match - The discussion match % influences when the bot will use a response in a discussion. If the response's
correctness is less than the %, or for a response match, if the question's % match is less than the %, then the response will not be
used. If no responses match the %, then the bot will not respond. The bot is in discussion mode for chat room conversations, such as
chat rooms, IRC, twitter status updates and searches. A chat room message that mentions the bot's name is treated as a
conversation message, not a discussion message. The default is 90%.

Enable Emoting - Configures the ability for users to teach the bot emotes. If disabled, only administrators will be able to teach the
bot emotes. An emote associates an emotion with a word or phrase and influences the bot's avatar and mood.

Enable Emotions - Configures the ability for the bot feel or associate emotions. Disabling emotions can improve the bot's
performance somewhat, and prevent it from becoming self aware.

Allow JavaScript - Allow the bot's responses to contain JavaScript. Caution should be used it enabling JavaScript to prevent
security issues. For security reasons JavaScript cannot be enabled if learning is enabled. JavaScript is only allowed for commercial
accounts.

Enable Comprehension - Configure if the bot should attempt to identify language rules from conversations. Comprehension allows
the bot to self learn template or scripted responses, such as learning to count, or inferring learned phrases like 'What is your name?'
-> 'I am Jim' as Template('I am {speaker}'). When enabled comprehension will enable the bot to extend its last script with its own
code. Disabling comprehension can improve performance, and ensure the boy only responds exactly as you have train it.

Enable Consciousness - Configure if the bot should have a consciousness and temporal awareness. The consciousness is used to
determine the best response, or best word or meaning based on the context. Objects increase their consciousness level based on
their relationship input, and fade over time. Temporal awareness associates a timeframe and temporal order for input. Disabling the
consciousness can improve performance.

Enable Wiktionary - Configure if the bot should look up word definitions on Wiktionary. This helps the bot identify names, nouns,
verbs, adjectives, synonyms, antonyms, and word definitions. This is used by many of the bootstrap scripts such as
NounVerbAdjective and WhatIs. Currently only the English Wiktionary is used. This can be disabled for non-English bots, or to
improve performance and reduce memory consumption.

Enable Response Matching - Configure if the bot should search for similar questions and responses when encountering a question
it does not know a response to. This heuristic can also be influenced using the conversation/discussion match %. Responses can
also be given keywords, required words, previous and topics to improve response matching.

Check Exact Match First - Configure if the bot should reply to questions with a known response before executing its scripts. This
lets learned responses override scripted responses, and can improve response times for known responses.

Split Paragraphs - Configure if multi setence inputs should be split up and processed as multiple input. This means your bot's
response will contain responses to each setence in the users input. Some scripts may require this to be disabled to process *
patterns.

Fix Case for Template Responses - Configure if template formula responses should be fixed to use proper case. When enabled the
first word will be capitalized, and other words other than names will be lower case.

Learn Grammar - Configure if word associations and grammar should be learned. When enabled words will be associated with what
words come before and after them. This helps the bot choose the correct word for verbs and pronouns. This can be disabled to
improve performance, or avoid the bot learning bad grammar from users.

Synthesize Response - Configure if a synthesized response should be used by default. This will have the bot generate a unique
response to the question base on the question's words. A synthesized response will only be used if the bot has no response match,
and has no default response. Learn grammar should be enabled for this feature.

Properties

Properties Description

Learning Mode Configure which type of users that bot should learn from.

Correction Mode Configure which type of users are allowed to correct the bot's responses.

Learning Rate The % rate to increase a response's correctness when learning.

Script Timeout Number of milliseconds to allow for script processing.

Response Timeout Number of milliseconds to allow for response matching.

Conversation Match The % confidence required for a bot to use or match a response in a conversation.

Discussion Match The % confidence required for a bot to use or match a response in a discussion.

Enable Emoting Config if users are allow to associate emotions with responses.

Enable Emotions Config if the bot should experience emotions.

Properties Description

Allow JavaScript Allow the bot's responses to contain JavaScript.

Enable Comprehension Configure if the bot should attempt to identify language rules from conversations (disable to improve performance).

Enable Consciousness Configure if the bot should have a consciousness and temporal awareness (disable to improve performance).

Enable Wiktionary Configure if the bot should look up word definitions on wiktionary (English only, disable to improve performance).

Enable Response Matching Configure if the bot should search for similar questions and responses when encountering a question it does not know a response to.

Check Exact Match First Configure if the bot should reply to questions with a known response before executing its scripts.

Split Paragraphs Configure if multi sentence inputs should be split up and processed as multiple input.

Fix Case for Template Responses Configure if template formula responses should be force to use proper case.

Learn Grammar Configure if word associations and grammar should be learn.

Synthesize Response Configure if a synthesized response should be used if no default response.

See Also

• Create bots with a real brain

Training & Chat Logs
Overview
Your bot's conversation logs can be accessed from the 'Training & Chat Logs' menu in its Admin Console. The Training & Chat Logs

page lets you review your bot's conversations, responses, words, and phrases.

The training and chat logs page allows you to add new responses, greetings, and default responses. You can view the conversations

your bot has had, and correct the responses. You can view and edit responses, greetings, default responses, phrases and flagged

responses.

You can correct a bot's response in a conversation, or add or edit existing responses. You can associate keywords, required words,

previous responses, and topics to your bot's response to improve its response matching and conversation context. You can label

responses to reuse them in other questions by referencing the #label.

You review your bot's words and phrases. You can define sentiment, emotions, actions, poses, keywords, and synonyms.

You can also import response lists, chat logs, or AIML files from the shared script library, or upload the files from your computer. You

can export and download your bot's conversations or responses as a response list, chat log, or AIML file.

Toolbar

Icon Property Name Description

Menu Choose from the list of options.

Home Returns to the training and chat logs start page.

Enter Enter a new default response.

Edit Enter a correct response for the selected phrases.

Inspect Browse the selected responses or phrases.

Select Select all conversations, responses, or phrases.

Wrong Mark the selected responses as invalid responses, or decrease their correctness %.

Check Mark the selected responses as valid responses, or increase their correctness %.

Flag Flag the selected phrases as offensive.

Unflag Unflag the selected phrases as not offensive.

Delete Delete the selected responses, greeting, default response, or conversations.

Export/Download Export and download the currently displayed logs as a chat log file, response list, or AIML script.

Upload Upload and import a chat log, response list, or AIML script.

Import Import a chat log, response list, or AIML script from the script library.

Search Properties

Properties Description

Search Search all conversions, responses, greetings, default responses, phrases, words, or flagged responses.

Duration Filter the results by day, week, month, or all.

Filter Filter the results to only include phrases containing the filter text.

Type Filter by chat or social media message type.

Properties Description

Restrict Filter the responses or conversations.

All Show the responses details.

Topic Show the topic of the responses.

Label Show the label of the responses.

Keywords Show the question keywords to match the responses.

Required Show the question required words to match the responses.

Emotions Show the emotions of the responses.

Sentiment Show the sentiment of the responses.

Confidence Show the confidence of the responses.

Actions Show the actions of the responses.

Poses Show the poses of the responses.

Next Show the next questions to the responses.

Previous Show the previous questions to the responses.

Repeat Show the response repeat options.

Condition Show the response condition code.

Think Show the response think code.

Command Show the response JSON client command.

Conversations
You can review your bot's conversations, and correct the bot's response if it did not know the answer, or gave an incorrect response.

Browse Conversations

Correct Response

Responses
You can add new responses, or edit existing responses. A response includes the question, the response, and various meta data

about the response.

To see all of your bot's trained responses, search for responses for the all duration. This will list all of your bots responses, ordered

by when they were added. A response will not only be used for the exact question it was learned for, but also any similar questions.

When your bot encounters a question it does not know a response to, it will find the best matching question that it knows a response

to, and use that response. If the bot does not know any similar questions, then it will use its default response.

The response browser lets you enter a new response, or edit, delete, invalidate, validate, or flag any existing responses.

The response editor lets you enter the question and response and optional response properties and metadata. You can choose to

edit your response using a rich 'WYSIWYG' (what you see is what you get) editor, or a plain text editor. Responses are in HTML, and

can contains most HTML tags such as for bold, <a> for links, for images, and <button> for buttons.

Response Properties

Name Description

Question Edit the question, if desired, you can use * wildcard to make a pattern.

Sentiment You can associate an emotion with the phrase.

New Response Enter a new response for the phrase.

Condition Optionally you can give a condition in self code that must evaluate to true for the response to be use.

Think Optionally you can give a 'think' code in self that is evaluated when the response is used.

Command Optionally you can give a JSON command (Self code) that is evaluated and returned to the client to support games and virtual assistance.

Topic Optionally you can give a topic to categorize the response under.

Intent Label Optionally you can give a label to reuse the response as.

Keywords Optionally you can give keywords from the question that will influence a response match.

Required Optionally you can give required words from the question that will be required for a response match.

Emotions You can associate an emotion with the response.

Actions You can associate an action with the response.

Poses You can associate a pose with the response.

On Repeat Optionally you can give a response to used if the current response has already been used in this conversation.

No Repeat Require that the response or phrase only be used once.

Next Optionally you can give a next response to give a response a context.

Previous Optionally you can give a previous response to give a response a context.

Require Previous Require that the response only be used if the previous response matches one of the previous responses.

Save Save the corrections to the phrases.

Question

The response question can be a phrase that will be automatically matched with similar questions, or can be a Pattern. Patterns are

matched literally in the order of the words in the pattern, and can have wildcard characters such as * and can also include Regular

Expressions. Normally it is best to use a phrase, and let the bot decide if a question should match, you can also add keywords and

required words to improve when a question is matched. To enter a pattern just use a wildcard such as * in the question, or enter your

pattern like the following.

Pattern("What is *")

Response

The response can be a phrase, can contain HTML or rich content including images, video, and buttons, or a response can be a

Template. A template is a response that can include some Self code. Any code inside {} in a template will be executed, and the result

printed into the response. To enter a template just include {} in your response, or enter your template like the following (do not use

the WYSIWYG editor for tempates).

Template("Today is {Date.date()}.")

Keywords

Keywords are important words in the question that should influence when the response is used.

// Keywords are used to allow this response to be used for any questions on hockey or spinach.
question: do you like hockey
response: Hockey is my favorite sport.
keywords: hockey

question: what do you love
response: I love hockey!
keywords: love luv like adore

question: do you like field hockey
response: I only play ice hockey.
keywords: "field hockey"

question: i love spinach
response: Spinach is is my favorite food.
keywords: spinach

A keyword will be used by the bot to select the best response. Keywords let some words count for more than other words. In the

example, the bot knows two responses, how will it respond to the phrase "I love hockey"? Without the keywords the bot would

probably match this question with "I love spinach", but since hockey is a keyword, it will instead match it with "Do you like hockey?".

If the response has no defined required words, then the keywords will also be required for the response match. So "I love hockey"

would not be matched with "I love spinach." because it is missing the keyword.

If you keywords has many similar words. You can list them all as keywords to match any of the words. You could also define these

words a synonyms, which may be a better option.

You can also use compound words are keywords. A compound keyword must have all the words in the order to be used. For a

compound keyword just wrap the words in "quotes".

Be careful using too many keywords. If every word is a keyword, then their value is diminished. Never make common words like

"the", "a", "he", "what" keywords, if you require one of these words for a match use a required word instead.

You can also review all of your bot's keywords by searching for 'words' and restrict to 'keywords'. This lets you remove a word from

being a keyword if you added it by mistake.

Required

A required word is a word that is required to be in the question for a specific response.

// This example requires the words 'like' and 'hockey'.
question: do you like hockey
response: Yes, I like hockey.
required: like hockey

// This example requires the compound word 'ice hockey'.
question: do you like ice hockey
response: Yes, I like ice hockey.
required: "ice hockey"

// This example requires one of the words 'like' or 'love', and 'hockey'.
question: do you like ice hockey
response: Yes, I like ice hockey.
required: (like love) hockey

// This example requires a pattern.
question: are you okay
response: Yes, I am okay.
required: Pattern("^ are you (ok okay)")

A required word can be used to ensure the bot does not choose a response if the required word is missing from the question. For

example the question "Do you play hockey?" would normally be matched to this response, but because it is missing the required

word "like", it will not be considered as a match.

All of the required words must be contained in the question in order for the response to be used. Required words also supports lists,

compound words, and patterns. To require one of a set of words a list can be used using brackets i.e. (like love). To require a

compound word quotes are used i.e. "hello world". To require a pattern enter the pattern i.e. Pattern("what is *").

Previous

A previous responses is the bot's preceding response. Previous responses can be used to give a response a context.

// This example uses previous to give different answers to 'yes' depending on the context.
question: yes
response: Great, wanna go out sometime?
require previous: Are you single?

question: yes
response: I am please to hear that.
require previous: Are you happy?

The question "Yes" has multiple responses. The bot can use the previous response to choose the best response. You can also

invalidate a previous response to ensure the bot does not use a response if the previous response was preceding.

A previous response can either be 'required' or optional. If required, the response will never be used unless one of the previous

response matches. If optional (default) the response is given precedence if the previous response matches, but can still be used if

the previous does not match.

Topic

A topic is the general topic category for the response. For example a response on a hockey related question would belong to the

"hockey" topic. You can use topics to categories your responses and give the bot additional context. If the bot has multiple responses

to a question, it will use the one that matches the current topic.

Topics can be either optional or required. The response topic is optional by default, it you click on 'Require Topic', then the response

will only be used if that topic is active in the conversation. If optional the topic will be set as active for the conversation, until a new

topic is set.

Topics can also be defined as exclusive. An exclusive topic defines an isolated conversational space. For a normal topic that is not

exclusive the bot can still use responses that do not have the same topic, but responses with the active topic will be given

precedence over responses without a topic. For exclusive topics only response that have the same topic as the active topic will be

used. No other responses will be used (other than possibly the default response if there is no topic default).

Topics can also be set on greetings to start the conversation with a topic. Topics can be set on default responses to provide a

different response when that topic is active.

// Categorizes the product response.
question: what are your products
response: Our products include ACME CRM and ACME ERP.
topic: products

// Use an exclusive topic to define a joke conversational dialog.
question: joke
response: Knock knock.

exclusive topic: joke

question who is there
response: Boo.
require topic: joke

question: boo who
response: Don't cry. lol
require topic: joke
think: conversation.topic = null;

default: Say 'Who is there?'
require topic: joke

default: Say 'Boo who?'
require topic: joke
previous: boo

Intent Labels

A response can be given an intent label to let you reuse the same response in other questions. You can also use labels in a

response's previous.

// Use a label to reuse the common products response.
question: products
response: Our products include ACME CRM and ACME ERP.
label: #products

question: what are your products
response: #products

question: what software do you sell
response: #products

question: are they good
response: Our products are the best in the world.
previous: #products

On Repeats

If the user asks the same question, or similar questions multiple times, you may want your bot to give a different response the second

time. On repeat lets you set one or many responses to use the second time that response is triggered in the same conversation. You

can also set 'No Repeat' to never repeat the response in the same conversation.

// Offer to escalate the issue if the user repeatedly asks for help.
question: help
response: How can I help you?
on repeat: What is the issue that you are having?
on repeat: Would you like me to have a support staff contact you?

question: goodbye
response: Before you go, would you like to take a survey?
no repeat:

question: goodbye
response: Goodbye.

Conditions

Conditions let you enter Self code that must evaluate to true for the response to be used. This is an advanced properties as it

requires you understand Self (a dialect of JavaScript), but can be used to do very powerful things.

// Response to goodbye differently based on the time of day.
question: goodbye
response: Goodnight.
condition: Date.get(#hour, Date.time()) > 18

question: goodbye
response: Goodbye.

Think

Think let you enter Self code that is executed when the response is used. This is an advanced properties as it requires you

understand Self (a dialect of JavaScript), but can be used to do very powerful things.

// Track the user's name.
pattern: my name is *
template: Pleased to meet you {star}.
think: speaker.name = star;

question: what is my name
template: Your name is {speaker.name}.

question: can we change the subject
response: Sure, what would you like to talk about?
think: conversation.topic = null;

Confidence

You can enter multiple responses for the same question. The bot will use the response that it is the most confident in for the current

conversational context. By default a response is given a confidence level of 90%, but you can customize the value. Note that in a

group discussion such as when the bot is added to a chatroom, or on Twitter, the bot will only use responses that have >=90%

confidence.

Sentiment

You can associate a user question or phrase, or individual words with sentiment (good vs bad). Sentiment can be used to track how

the user is feeling about the current conversation. The sentiment statistic is tracked by your bot daily and can be graphed from its

Analytics page.

question: thank you
response: You are most welcome.
keywords: thank
sentiment: good

question: you suck
response: Sorry, I am doing my best. Would you like me have someone contact you via email?
keywords: suck
sentiment: bad

word: suck
sentiment: bad

word: great
sentiment: great

Next and Conversation Flows
Next questions in a response can be used to handle follow-up questions and conversation flows. To start a conversation flow, edit the

root response and enter the follow-up question under 'Next'. You can then select the next question and edit the response. You can

repeat this several times to define your complete conversation.

A respones next question defines an isolated conversation space. The bot will only choose its next response from the provided

responses. To define a default response use the #default as the question. If the bot cannot match the user's question with a next

question, it will search the responses parent, otherwise use the bot's default response.

Next is similar to previous, but unlike previous is isolated to the response. In the context of a next response, the bot will never use

any of its responses outside the context of the next response. This makes is easy to define isolated and nested conversations.

Greetings
A greeting is the bot's first response in a new conversation. You can add new greeting, or edit existing greeting. A greeting includes

various meta data about the greeting.

Greeting Properties

Name Description

Greeting Edit the greeting.

Condition Optionally you can give a condition in self code that must evaluate to true for the response to be use.

Think Optionally you can give a 'think' code in self that is evaluated when the response is used.

Command Optionally you can give a JSON command (Self code) that is evaluated and returned to the client to support games and virtual assistance.

Topic Optionally you can give a topic to categorize the response under.

Exclusive Topic Optionally you can set an exclusive topic to a conversation so that only responses that have this topic will be used.

Intent Label Optionally you can give a intent label to reuse the response as.

Emotions You can associate an emotion with the greeting.

Actions You can associate an action with the greeting.

Poses You can associate a pose with the greeting.

Name Description

Next Optionally you can give a next greeting to give a response a context.

Save Save the corrections to the phrases.

Default Responses
If the bot does not find any good matching question to a user's input, it uses its default response. You can add new default response,

or edit existing defalult response. Default response includes various meta data about the response.

Default Response Properties

Name Description

Default Response Edit the default response.

Emotions You can associate an emotion with the default response.

Actions You can associate an action with the default response.

Poses You can associate a pose with the default response.

Condition Optionally you can give a condition in self code that must evaluate to true for the response to be use.

Think Optionally you can give a 'think' code in self that is evaluated when the response is used.

Command Optionally you can give a JSON command (Self code) that is evaluated and returned to the client to support games and virtual assistance.

Topic Optionally you can give a topic to categorize the response under.

Label Optionally you can give a label to reuse the response as.

On Repeat Optionally you can give a response to used if the current response has already been used in this conversation.

No Repeat Require that the response or phrase only be used once.

Previous Optionally you can give a previous response to give a response a context.

Require Previous Require that the response only be used if the previous response matches one of the previous responses.

Save Save the corrections to the phrases.

Phrases
You can add new phrase, or edit existing phrase. A phrase is just a sentence, it may or may not have a response. The phrase editor

allows you to associate sentiment, emotions, action, poses, or a response to a phrase.

Phrase Properties

Name Description

Question Edit the question, if desired, you can use * wildcard to make a pattern.

Sentiment You can associate a sentiment with the phrase.

Emotions You can associate an emotion with the phrase.

Actions You can associate an action with the phrase.

Poses You can associate a pose with the phrase.

New Response Enter a new response for the phrase.

Condition Optionally you can give a condition in self code that must evaluate to true for the response to be use.

Think Optionally you can give a 'think' code in self that is evaluated when the response is used.

Command Optionally you can give a JSON command (Self code) that is evaluated and returned to the client to support games and virtual assistance.

Topic Optionally you can give a topic to categorize the response under.

Intent Label Optionally you can give a label to reuse the response as.

Keywords Optionally you can give keywords from the question that will influence a response match.

Required Optionally you can give required words from the question that will be required for a response match.

Emotions You can associate an emotion with the response.

Actions You can associate an action with the response.

Poses You can associate a pose with the response.

On Repeat Optionally you can give a response to used if the current response has already been used in this conversation.

No Repeat Require that the response or phrase only be used once.

Next Optionally you can give a next response to give a response a context.

Previous Optionally you can give a previous response to give a response a context.

Require Previous Require that the response only be used if the previous response matches one of the previous responses.

Save Save the corrections to the phrases.

Words
You can add new words, or edit existing words. A word can include sentiment, emotions, and synonyms. A word can also be a

keyword, a topic, or an exclusive topic.

Word Properties

Name Description

Word Edit the word.

Sentiment Optionally you can associate a sentiment with the word.

Emotions Optionally you can associate an emotion with the word.

Keyword Define the word to be a keyword.

Synonyms Optionally you can give a list of synonyms to the word, so that similar words in a question to trigger the same response.

Topic Define the word to be a topic.

Exclusive Topic Define the word to be an exclusive topic.

Save Save the corrections to the word.

See Also

• How to train your customer service bot by monitoring its chat logs, using keywords and topics.
• What are the supported response and chat log formats for importing and exporting?
• What are topics?
• What are labels, and how to reuse responses?
• What are previous responses?
• What are required words?
• What are keywords?

Scripts
Overview
The scripts tab allows you to add scripts to your bot. This table shows all bot's active scripts.

Toolbar

Icon Property Name Description

Add Add the new script.

Edit Add the selected script.

Select Select or unselect all scripts.

Remove Remove all selected scripts.

Downlad Download a Self script, or AIML script.

Upload Upload and import a Self script, or AIML script.

Import Import a Selft script, or AIML script from the script library.

Up Move all selected scripts order up.

Down Move all selected scripts order down.

Bootstrap

Rebootstrap permanently deletes all scripts (state machines) and rebootstraps with the system defaults.

See Also

• Self
• AIML
• Introducing the Self Scripting Language
• Scripting your bot with AIML
• What classes are supported in Self

Google
Overview
The Google tab allows you to connect your bot to Google services such as Google Calendar. You can access Google services from

Self scripts using the Google and GoogleCalendar classes.

See Also

• Admin Console - Google
• Google API Console
• Google Calendar API
• Google APIs Terms of Service
• Google Calendar

Wolfram Alpha
Overview
You can connect your bot to Wolfram Alpha to answer questions.

Properties

Properties Description

Wolfram Alpha App Id Enter the App Id from the Wolfram Alpha website.

See Also

• How To Connect a Bot to Wolfram Alpha
• Wolfram Alpha

Timers
Overview
The Timers tab allows you to setup your bot to run scripts at various time intervals. This can be used to automate tasks such as

polling websites, mailing/message lists, push notifications, or content services.

Properties

Property Description

Enable Timers Enable the timers.

Auto Post Hours The number of hours to wait between auto posts.

Timer Scripts Set of timer messages. List each message separated by a new line.

See Also

• Timers

Web Import
Overview
The web tab allows you to import data from websites such as Wiktionary, and WikiData.

Properties

Icon Property Name Description

Menu Choose icons from Menu.

Inspect Inspect the selected objects.

Knowledge Browse all objects that reference the selected objects.

Select Select all (or the first 100) objects.

Pin Pin the selected objects, so they cannot be forgotten.

Unpin Unpin the selected objects, so they cannot be forgotten.

Delete It will permanently delete the selected objects or relationships.

Export Export the objects to JSON or CSV (spreadsheet)

See Also

• Web Import
• Log

Knowledge
Overview
Each bot has its own integrated object database where it stores all of its data including conversations, users, responses, and scripts.

You can browse your bot's knowledge base an import or export data using the JSON or CSV format.

Search
The knowledge tab allows you to query, view, and edit the knowledge in your bot's knowledgebase.

Properties

Property Description

Filter Enter your knowledge data query string, use * as a wildcard.

Type Filter the results by the type of data.

Class Filter the results by the classification of data.

Pinned Filter only pinned data.

Sort Sort by Value, Name, Type, Creation date, Access date, and Access count.

Order Order by Ascending or Descending.

Query Queries and displays all bot's knowledgebase objects.

Delete All Caution, this is permanently delete everything from the bot's memory and bootstrap it with minimal knowledge.

Clear Cache This will clear your bots shared server-side cache. This can sometimes resolve issues your bot is having. This may affect any connected users.

Toolbar

Icon Property Name Description

Menu Choose upload or import.

Home Home of knowledge page.

Reports and Tasks View reports and tasks.

Browse Knowledge Process or query object in your bot's knowledgebase.

Inspect Inspect selected objects.

Knowledge Bot's knowledge.

Select Select all (or first 100) objects.

Pin Pin the selected objects, so they cannot be forgotten.

Unpin Unpin the selected objects, so they can be forgotten.

Delete Permanently deletes selected objects or relationships.

Icon Property Name Description

Download Import object to JSON or CSV spreadsheet.

Upload Upload/Import objects from JSON or CSV (spreadsheet).

Import Import objects from JSON or CSV script in the script library.

Reports and Tasks
The reports page lets you manage your bot's knowledgebase by running common cleanup reports and tasks.

Properties

Property Description

Report Execute a predefined report.

Run Task Execute a predefined administrative task.

Worksheet
The worksheet let you execute adhoc Self code to process or query object in your bot's knowledgebase.

Properties

Property Description

Execute Execute the self code.

Status
The status tab reports the bot's current database size. When the bot reaches its database limit, it will automatically garbage collect

old objects and conversations.

See Also

• Browse knowledge
• Introducing the Self scripting language

Log
Overview
The log tab allows you monitor and debug your bot's processing.

See Also

• Log

Analytics
Overview
You can view your bot's analytics from its Admin Console by clicking on 'Analytics'. Analytics provides graphs and data on the bot's

activity in the form of charts and tables. You can navigate through different analytics by selecting a specific social media chart, and

further refine it by duration period and grouping.

Properties

Properties Description

Charts Graphs of different social media interactions.

Duration Displays a graph for a given period of time. User can choose duration of the graph to be displayed for either week, month, or everything.

Group By Groups graph data either by day, week, or month.

Analytics

Properties Description

Conversations Total conversations the bot had for all chat and social media platforms.

Messages Total messages the bot had for all chat and social media platforms.

Conversation Length Total conversation length the bot had for all chat and social media platforms.

Engaged Conversations Total number of conversations that bot had with at least three messages.

Default Responses Total number of messages the bot did not find an answer for. When the bot does not know a response to a question, it uses its 'default' response.

Confidence Avarage confidence the bot had on its responses based on the user question and the bot's matching trained question. Exact question matches and pattern matches are
considered to be 100%, and default responses are 0%.

Sentiment User's average sentiment or emotion to the bot's responses, either good or bad. If the user's questions seem very happy the sentiment will be 100%. If the user seems
very unhappy the sentiment will be -100%. If the user did not express any emotion, then the sentiment will be 0%.

Connects Total number of times a user or admin connected to the bot through the web or mobile.

Chats Total number of chats that the bot had.

Live Chats Total number of live chats that the bod had.

Errors Total number of errors the bot had while responding to chats.

Response Time How long it took the bot to respond the the user's message for chat and all social media platforms.

Imports Total number of scripts or response lists imported into the bot.

Tweets Total number of tweets the bot posted for Twitter social media.

Retweets Total number of retweets the bot has made for Twitter social media.

Tweets Processed Total number of tweets bot has read.

Direct Messages Total number of private, user to user chat message for Twitter social media.

Facebook Posts Total number of Facebook posts the bot has made for Facebook social media.

Facebook Likes Total number of Facebook posts that bot 'likes'.

Facebook Messages Total number of Facebook posts processed by the bot for Facebook social media.

Facebook Messages
Processed

Total number of Facebook messages that the bot has read for Facebook social media.

Skype Messages Total number of Skype messages the bot has read.

Kik Messages Total number of Kik messages the bot has read.

WeChat Messages Total number of WeChat messages the bot has read.

Slack Messages Total number of Slack messages the bot has read.

Slack Posts Total number of Slack posts the bot has made for Slack social media.

Telegram Messages Total number of Telegram messages the bot has read.

Telegram Posts Total number of Telegram posts the bot has made for Telegram social media.

Email Total number of emails the bod has sent.

Emails Processed Total number of emails the bot has read.

SMS Sent Total number of SMS messages the bot has sent.

SMS Processed Total number of SMS messages the bot has read.

Chart
Choose any of the 11 available bot's analytics charts you want to see by selecting it from 'Charts' drop down select. You can view

bot's chart for a duration preriod of either current week, current month, or all time by selecting a duration period from the duration

drop down select. You can group bot's analytics either by day, week, or month by selecting a group from a group by drop down

select.

Table Stats
Table stats displays bot's raw analytic data in a table. The data in the table is graphed in a chart above. You can sort the bot's

analytics in the table by any column by clicking on the column's title.

Twitter
Overview
The twitter tab allows you to connect your bot to a Twitter account, and monitor a Twitter feed. The bot can manage the Twitter

account, checking status updates, managing followers, replying to mentions and direct messages, retweeting important posts,

tweeting your blog posts or RSS feed, and auto tweeting.

Properties

Properties Description

Authorize Authorize your bot to access a twitter account.

Connect Connect your bot to a twitter account.

Twitter User You do not need to enter this, just click authorize.

Twitter Application Token You do not need to enter this, just click authorize.

Twitter Application Token Secret You do not need to enter this, just click authorize.

Twitterbot Properties

Twitterbot Properties Description

Tweet when someone chats with
the bot

Configure if the bot should tweet that someone is chatting with it.

Reply to mentions Configure if the bot should reply when someone mentions it in a tweet.

Reply to direct messages Configure if the bot should reply when someone sends it a direct message.

Read friends status updates Configure if the bot should read (and possibly respond to) its friend's status updates. The bot will only read the status updates that match one of the Status
Keywords sets below.

Read-only Configure if the bot should read (and not respond to) its friend's status updates.

Learn from friends/search tweets Configure the bot to learn EVERY tweet as a valid response to itself or its hashtags. This is not recommended, and ensure your bot complies with Twitter's
terms of use.

Learn from your tweets Configure the bot to learn EVERY tweet from your account as a valid response to itself or its hashtags. This is not recommended, but can be used to train your
bot.

Max Status Updates Maximum status updates to read per cycle (max is 20). Retweets are not included. Larger limits are available for commercial accounts at, www.botlibre.biz

Reply Keywords/Hashtags Only friend status updates or search results that contains 'all' of one of the keyword/tag sets will be read, and possibly responded to.

Tweet Search Search for tweets matching one of the keyword/tag sets, process and possibly retweet or respond to them. Use this with caution, avoid spam, and ensure your
bot complies with the Twitter terms of use.

Retweet Keywords/Hashtags Retweet friend's, or search result tweets that contain one of the keyword/tag sets. Use this with caution, avoid spam, and ensure your bot complies with the
Twitter terms of use.

Max Search Retweets Maximum tweet search result to process or retweets per cycle (max is 20). Larger limits are available for commercial accounts at, www.botlibre.biz

Auto Follow Configure if the bot may follow users who follow it. Use this with caution, and ensure your bot complies with the Twitter terms of use.

Follow Messages Configure if the bot should follow, or unfollow a user when sent a 'follow me' or 'unfollow me' message.

Welcome Message Private message to send users who follow the bot.

Max Friends Maximum users to auto follow. Your bot can have more friends if you add them manually.

Auto Follow Keywords Only user's who's description contains one of the keyword sets will be followed. Use this with caution, and ensure your bot complies with the Twitter terms of
use.

RSS Feeds Automatically tweet content from the RSS feeds. List each feed separated by a new line. You can include a prefix and/or a suffix to append to the RSS title.

RSS Keywords Only tweet RSS feeds that contain one of the keywords set in their title.

Auto Tweet Configure if the bot should tweet automatically every set number of hours.

Auto Tweet Hours The number of hours to wait between auto tweets.

Auto Tweets Set of tweets to auto tweet. List each tweet separated by a new line. Self and AIML templates can be used.

See Also

• Automate your Twitter presence with your own Twitterbot
• Video: How To Connect a Bot to Twitter

• Twitter: Automation rules and best practices
• How to make a Twitter bot reply to tweets
• twitter.botlibre.com

Facebook
Overview
The Facebook tab allows you to connect your bot to Facebook and Facebook Messenger, and monitor a Facebook account or page.

Bot Libre provides its own Facebook app to provide many automation features, and lets you develop your own Facebook app to gain

access to more features. To authorize a new account, just click the 'Authorize' button, then click 'Connect'. Some features are only

supported for Facebook Page automation, or with your own Facebook app key.

To connect to a new account, first click 'Authorize', then 'Connect'.

To connect a bot to Facebook Messenger or to your own Facebook app click 'Advanced', and see How To Connect a Bot to

Facebook Messenger.

Properties

Properties Description

Authorize Authorize your bot to access a facebook account.

Connecct Connect your bot to a facebook account.

Facebook User You do not need to enter this, just click authorize.

Facebook Access Token You do not need to enter this, just click authorize.

Page Select the page you wish the bot to monitor.

Facebook App ID Advanced: Only for user developing their own facebook app.

Facebook App Secret Advanced: Only for user developing their own facebook app.

Webhook Callback URL A webhook is only required for realtime Facebook Messenger page messages. You must submit your webhook to your facebook app.

Facebook Messenger Properties

Facebook Messenger Properties Description/th>

Do not reply to messages Configure if the bot should not reply when someone sends it a message.

Poll and reply to messages Configure if the bot should poll its messages and reply when someone sends it a message.

Facebook Messenger app (realtime messages) Configure Facebook Messenger support for a Facebook page.

Facebook Messenger Page Access Token Configure Facebook Messenger support for a Facebook page.

Button Type Facebook Messenger supports two button types, 'buttons', and 'quick replies'.

Remove Button Text Remove the button text from the message as it will be displayed in the Facebook Messenger button.

Greeting Text Configure Facebook Messenger greeting text.

Get Started Button Post Back Configure Facebook Messenger get started button post back.

Persistent Menu Set of menu items for the Facebook Messenger 'Persistent Menu'.

Facebook Page/Profile Properties

Facebook Page/Profile
Properties

Description

Max Posts Maximum posts to process per cycle (max is 20). Larger limits are available for commercial accounts at, www.botlibre.biz

Process Wall Posts Configure if the bot should read (and possibly respond to) its wall/page's posts. Facebook only allows access to wall posts to authorized Page accounts, or if you
use your own Facebook app key.

Reply to All Wall Posts Configure if the bot should reply to all posts to its wall/page.

Wall Reply Keywords/Hashtags Only posts that contains 'all' of one of the keyword/tag sets will be replied to.

Auto Like Automatically like posts shared on its wall.

Like All Posts Configure if the bot should like all posts shared on its wall.

Like Keywords/Hashtags Configure if the bot should like all posts shared on its wall.

Post RSS Feed Automatically post content from an RSS feed.

RSS Feeds Automatically post content from the RSS feeds. List each feed separated by a new line. You can include a prefix and/or a suffix to append to the RSS title.

RSS Keywords Only post RSS feeds that contain one of the keywords set in their title. Keywords must be separated by a space (not a comma), each keyword set must be
separated by a new line.

Auto Post Configure if the bot should post automatically every set number of hours.

Auto Post Hours The number of hours to wait between auto posts.

Auto Posts Set of posts to auto post. List each post separated by a new line. Self and AIML templates can be used.

See Also

• Automating your Facebook presence using a Facebook bot
• Video: How To Connect a Bot to Facebook Messenger
• Video: How To Connect a Bot to a Facebook Page
• How To Connect a Bot to Facebook Messenger
• Facebook: Terms of Service

Skype
Overview
You can connect your bot to Skype to answer questions or monitor a conversation.

Properties

Properties Description

Skype Messaging Endpoint URL Set this URL on the bot settings page on the Microsoft Bot Framework website to enable replying to messages on Skype.

Skype App Id Enter the App Id from the bot settings page on the Microsoft Bot Framework website.

Skype App Password Enter the App Password from the bot settings page on the Microsoft Bot Framework website.

See Also

• How To Connect a Bot to Skype and the Microsoft Bot Framework
• Video: How To Connect a Bot to Skype and the Microsoft Bot Framework
• Skype
• Microsoft Bot Framework

Telegram
Overview
You can connect your bot to a Telegram chat account and chat with your bot on mobile, or have your bot manage your Telegram

channel.

The Telegram tab allows you to connect your bot to Telegram.

Properties

Properties Description

Connect Connect the bot.

Check Messages Have the bot check its telegram messages.

Telegram Bot You do not need to enter this, just click Connect.

Bot Token (from Telegram) You do not need to enter this, just click Connect.

Webhook URL Enable realtime messages and then click Connect to automatically send your webhook to Telegram.

Telegram Bot Properties

Telegram Bot Properties Description

Check messages (poll) Configure if the bot should poll for new messages and reply.

Realtime messages (webhook) Configure if the bot should use a webhook to reply to messages in realtime.

Remove Button Text Configure if the bot should remove the button text from the message.

Track Messages Stores message in bot's input and conversation logs.

Group Reply Mode Choose bot's reply mode (Ignore, Listening Only, Listening, Discussion, and Conversation) to the group.

Channel Properties

Channel
Properties

Description

Channel You can have your bot manage a channel, and post from an RSS feed, or auto post. Enter your channel's name, and ensure your bot has been added as a channel
administrator.

RSS Feeds Automatically post content from the RSS feeds to a channel. List each feed separated by a new line. You can include a prefix and/or a suffix to append to the RSS title.

RSS Keywords Only post RSS feeds that contain one of the keywords set in their title. Keywords must be separated by a space (not a comma), each keyword set must be separated by a new
line.

Auto Post Configure if the bot should post automatically every set number of hours.

Auto Post Hours The number of hours to wait between auto posts.

Auto Posts Set of posts to auto post. List each post separated by a new line. Self and AIML templates can be used.

See Also

• Automating your Mobile Presence with a Telegram Bot
• Brain Bot
• Julie
• Bot Libre's Help Bot
• Bot Libre's Channel

Kik
Overview
You can connect your bot to Kik to answer questions or monitor a conversation.

Properties

Properties Description

Kik Display Name Enter the Kik Display Name from the bot configuration page on the Kik Dev website.

Kik API Key Enter the Kik API Key from the bot configuration page on the Kik Dev website.

See Also

• How To Connect a Bot to Kik
• Kik

WeChat
Overview
You can connect your bot to WeChat to answer questions or monitor a conversation.

Properties

Properties Description

WeChat Messaging Endpoint URL Enter this URL on the WeChat Developer Center to enable replying to messages on WeChat.

WeChat App Id Enter the app id from the WeChat Developer Center.

WeChat App Secret Enter the app secret from the WeChat Developer Center.

Token Enter the token from the WeChat Developer Center.

International Account Check this box if using International Account.

China Account Check this box if using China Account.

See Also

• How To Connect a Bot to WeChat
• WeChat
• WeChat Admin
• WeiXin

Slack
Overview
You can connect your bot to a Slack group to answer questions, post a feed, or monitor the conversation.

Properties

Properties Description

Slack Outgoing WebHook URL Set this URL on the Outgoing WebHooks configuration page on the Slack website to enable replying to messages on Slack.

Slack Outgoing WebHook Token Enter the Token from the Outgoing WebHook configuration page on the Slack website.

Slack Bot Username Enter the username from the Outgoing WebHook configuration page on the Slack website.

Slack Incoming Webhook Properties

Slack Incoming Webhook
Properties

Description

Slack Incoming WebHook URL Enter the WebHook URL from the Incoming WebHook configuration page on the Slack website.

RSS Feeds Automatically post content from the RSS feeds to a channel. List each feed separated by a new line. You can include a prefix and/or a suffix to append to the
RSS title.

RSS Keywords Only post RSS feeds that contain one of the keywords set in their title. Keywords must be separated by a space (not a comma), each keyword set must be
separated by a new line.

RSS Feed Bot Username (Optional) Override the bot username to use when posting an rss feed.

RSS Feed Channel (Optional) Override the channel to post the rss feed to.

Auto Post Configure if the bot should post automatically every set number of hours.

Auto Post Hours The number of hours to wait between auto posts.

Auto Posts Set of posts to auto post. List each post separated by a new line. Self and AIML templates can be used.

Auto Post Bot Username (Optional) Override the bot username to use when posting an auto post.

Auto Post Channel (Optional) Override the channel to post the auto post to.

See Also

• How To Connect a Bot to Slack
• Slack

Email
Overview
The email tab allows you to connect your bot to an email account, and monitor and reply to messages.

Properties

Properties Description

Email Address For the user email address.

User For the user email address.

Password Unsecure password.

Protocol Protocol name.

Properties Description

SSL To use search sockets.

Incoming Host Incoming host email.

Incoming Port Incoming port number.

Outgoing Host Outgoing host email.

Outgoing Port Outgoing port number.

Reply to Email Bot will reply to all the incomming emails.

Disconnect Disconnect bot from current email address

Check Email Bot checks email for the newly received emails.

Signature Signature of email that the bot will use when replying to emails.

Save Save current email settngs.

Test Sends a test email to the above email address.

See Also

• email.botlibre.com

SMS
Overview
The SMS tab allows you to connect your bot to SMS messaging.

SMS Properties

Properties Description

Twilio Webhook URL Set this URL in your twillo account to enable replying to SMS messages.

Twilio SMS SID To send SMS messages, enter your Twilio SMS account SID.

Twilio SMS Secret To send SMS messages, enter your Twilio SMS account secret.

Twilio Phone Number To send SMS messages, enter your Twilio SMS account phone number. Use the full number, i.e. +16131234567

See Also

• How To Connect your Bot to SMS Text Messaging
• Video: How to create a chat bot for Twilio and SMS
• twillo.com

IRC
Overview
IRC is Internet Relay Chat, a chat room standard. You can create an IRC bot. The IRC tab allows you to connect your bot to an IRC

chat room, so it can chat or listen and learn from others.

Properties

Properties Description

Server

Channel

Nick

Listen only

See Also

• IRC

Alexa
Overview
You can connect your bot to Alexa to answer questions or hold a conversation on an Amazon Echo device.

Built-In Intent Responses will be required to pass Amazon's Alexa Skill certification. These will only be active before the conversation

with your bot begins. After the conversation has begun, your bot will handle all responses.

Properties

Properties Description

Alexa Skill Endpoint URL Enter this URL into the Endpoint settings page of the Alexa Skills dashboard.

Alexa Launch Response Enter the response Alexa will say after the user launches your Skill. This should prompt the user to begin the conversation.

Alexa Help Response Enter the response Alexa will say after the user asks for help.

Alexa Cancel Response Enter the response Alexa will say after the user cancels interacting with your Skill.

Alexa Stop Response Enter the response Alexa will say after the user stops interacting with your Skill.

Alexa Fallback Response Enter the response Alexa will say if it does not understand the user's command.

End Conversation Properties

Properties Description

End Conversation Phrases Enter a set of phrases the user can say to end the chat session, separated by a new line.

See Also

• How to create a bot for Amazon Alexa
• Alexa

Google Assistant
Overview
You can connect your bot to Google Assistant to answer questions or hold a conversation on a Google Home or other Google

Assistant enabled device.

Properties

Properties Description

Google Assistant Webhook URL Set this URL on the Fulfillment page on the DialogFlow website to enable replying to messages.

End Conversation Phrases Enter a set of phrases the user can say to end the chat session, separated by a new line.

See Also

• How to create a bot for Google Home and Google Assistant
• Actions on Google
• Google Assistant

Android
Overview
You can download the Bot Libre app for Android, or use the Bot Libre Android SDK or web API to make your own Android app.

See Also

• SDK
• Bot Libre on Google Play

iOS
Overview
Bot Libre has an open source iPhone and iOS SDK that lets you build your own app or integrate our services into your own app.

See Also

• SDK
• Bot Libre on iTunes

SDK
Overview
The Bot Libre SDK provides an API for Android and iOS. The mobile SDK also provides a set of reusable interface components, and

examples apps that make it easy for you to develop your own app.

See Also

• SDK
• Create your own bot app with the Bot Libre SDK

Response List
Overview
A Response List is Bot Libre's text file format for defining a bot's responses. A response list is a list of question/response pairs. Each

phrase is separated by a new line, and each question/response list is separated by an empty line. You can also tag responses with

meta data such as keywords to influence when the response is used. Response lists are the recommended way to train a bot. The

bot will automatically find the best matching response for any question, the questions do not need to be exact matches, only

sufficiently similar, or include a keyword.

Response Tags

Tag Description

question: Defines the question. This is not required, as the first line after a blank line is assumed to be a new question.

pattern: Defines a question as a pattern. Patterns allow the wildcard * and other wild cards to be used.

response: Defines a response. This is not required, as any lines after the question as assumed to be responses.

template: Defines a response template. This lets you embed Self code inside {} brackets for dynamic responses.

sentiment: You can associate sentiment (good/bad) with the phrase.

condition: Optionally you can give a condition in self code that must evaluate to true for the response to be use.

think: Optionally you can give a 'think' code in self that is evaluated when the response is used.

command: Optionally you can give a JSON command (Self code) that is evaluated and returned to the client to support games and virtual assistance.

topic: Optionally you can give a topic to categorize the response under.

require topic: If the topic is required, the response will only be used when the topic is active.

exclusive topic: If the topic is exclusive, only response that share the topic will be used while the topic is active.

label: Optionally you can give a label to reuse the response as.

keywords: Optionally you can give keywords from the question that will influence a response match.

required: Optionally you can give required words from the question that will be required for a response match.

emotions: You can associate an emotion with the response.

actions: You can associate an action with the response.

poses: You can associate a pose with the response.

on repeat: Optionally you can give a response to used if the current response has already been used in this conversation.

no repeat: Require that the response or phrase only be used once.

previous: Optionally you can give a previous response to give a response a context.

require previous: Require that the response only be used if the previous response matches one of the previous responses.

confidence: Confidence can be used if a response is not certain. The matching response with the highest confidence will be used.

question:

The response question can be a phrase that will be automatically matched with similar questions, or can be a Pattern. Patterns are

matched literally in the order of the words in the pattern, and can have wildcard characters such as * and can also include Regular

Expressions. Normally it is best to use a phrase, and let the bot decide if a question should match, you can also add keywords and

required words to improve when a question is matched. To enter a pattern use the pattern: tag.

what is your name

question: what is your name

pattern: What is *

response:

The response can be a phrase, can contain HTML or rich content including images, video, and buttons, or a response can be a

Template. A template is a response that can include some Self code. Any code inside {} in a template will be executed, and the result

printed into the response. To enter a template use the template: tag and enter Self code inside {} brackets.

My name is Julie.

My name is <b≷Julie</b≷.

response: My name is Julie.

template: My name is {#self.name}.

template: The date is {Date.date()}.

keywords:

Keywords are important words in the question that should influence when the response is used.

// Keywords are used to allow this response to be used for any questions on hockey or spinach.
question: do you like hockey
response: Hockey is my favorite sport.
keywords: hockey

question: what do you love
response: I love hockey!
keywords: love luv like adore

question: do you like field hockey
response: I only play ice hockey.
keywords: "field hockey"

question: i love spinach
response: Spinach is is my favorite food.
keywords: spinach

A keyword will be used by the bot to select the best response. Keywords let some words count for more than other words. In the

example, the bot knows two responses, how will it respond to the phrase "I love hockey"? Without the keywords the bot would

probably match this question with "I love spinach", but since hockey is a keyword, it will instead match it with "Do you like hockey?".

If the response has no defined required words, then the keywords will also be required for the response match. So "I love hockey"

would not be matched with "I love spinach." because it is missing the keyword.

If you keywords has many similar words. You can list them all as keywords to match any of the words. You could also define these

words a synonyms, which may be a better option.

You can also use compound words are keywords. A compound keyword must have all the words in the order to be used. For a

compound keyword just wrap the words in "quotes".

Be careful using too many keywords. If every word is a keyword, then their value is diminished. Never make common words like

"the", "a", "he", "what" keywords, if you require one of these words for a match use a required word instead.

You can also review all of your bot's keywords by searching for 'words' and restrict to 'keywords'. This lets you remove a word from

being a keyword if you added it by mistake.

required:

A required word is a word that is required to be in the question for a specific response.

// This example requires the words 'like' and 'hockey'.
question: do you like hockey
response: Yes, I like hockey.
required: like hockey

// This example requires the compound word 'ice hockey'.
question: do you like ice hockey
response: Yes, I like ice hockey.
required: "ice hockey"

// This example requires one of the words 'like' or 'love', and 'hockey'.
question: do you like ice hockey
response: Yes, I like ice hockey.
required: (like love) hockey

// This example requires a pattern.

question: are you okay
response: Yes, I am okay.
required: Pattern("^ are you (ok okay)")

A required word can be used to ensure the bot does not choose a response if the required word is missing from the question. For

example the question "Do you play hockey?" would normally be matched to this response, but because it is missing the required

word "like", it will not be considered as a match.

All of the required words must be contained in the question in order for the response to be used. Required words also supports lists,

compound words, and patterns. To require one of a set of words a list can be used using brackets i.e. (like love). To require a

compound word quotes are used i.e. "hello world". To require a pattern enter the pattern i.e. Pattern("what is *").

Previous

A previous responses is the bot's preceding response. Previous responses can be used to give a response a context.

// This example uses previous to give different answers to 'yes' depending on the context.
question: yes
response: Great, wanna go out sometime?
require previous: Are you single?

question: yes
response: I am please to hear that.
require previous: Are you happy?

The question "Yes" has multiple responses. The bot can use the previous response to choose the best response. You can also

invalidate a previous response to ensure the bot does not use a response if the previous response was preceding.

A previous response can either be 'required' or optional. If required, the response will never be used unless one of the previous

response matches. If optional (default) the response is given precedence if the previous response matches, but can still be used if

the previous does not match.

topic:

A topic is the general topic category for the response. For example a response on a hockey related question would belong to the

"hockey" topic. You can use topics to categories your responses and give the bot additional context. If the bot has multiple responses

to a question, it will use the one that matches the current topic.

Topics can be either optional or required. The response topic is optional by default, it you click on 'Require Topic', then the response

will only be used if that topic is active in the conversation. If optional the topic will be set as active for the conversation, until a new

topic is set.

Topics can also be defined as exclusive. An exclusive topic defines an isolated conversational space. For a normal topic that is not

exclusive the bot can still use responses that do not have the same topic, but responses with the active topic will be given

precedence over responses without a topic. For exclusive topics only response that have the same topic as the active topic will be

used. No other responses will be used (other than possibly the default response if there is no topic default).

Topics can also be set on greetings to start the conversation with a topic. Topics can be set on default responses to provide a

different response when that topic is active.

// Categorizes the product response.
question: what are your products
response: Our products include ACME CRM and ACME ERP.
topic: products

// Use an exclusive topic to define a joke conversational dialog.
question: joke
response: Knock knock.
exclusive topic: joke

question who is there
response: Boo.
require topic: joke

question: boo who
response: Don't cry. lol
require topic: joke
think: conversation.topic = null;

default: Say 'Who is there?'
require topic: joke

default: Say 'Boo who?'
require topic: joke
previous: boo

label:

A response can be given an intent label to let you reuse the same response in other questions. You can also use labels in a

response's previous.

// Use a label to reuse the common products response.
question: products
response: Our products include ACME CRM and ACME ERP.
label: #products

question: what are your products
response: #products

question: what software do you sell
response: #products

question: are they good
response: Our products are the best in the world.
previous: #products

on repeat:

If the user asks the same question, or similar questions multiple times, you may want your bot to give a different response the second

time. On repeat lets you set one or many responses to use the second time that response is triggered in the same conversation. You

can also set 'No Repeat' to never repeat the response in the same conversation.

// Offer to escalate the issue if the user repeatedly asks for help.
question: help
response: How can I help you?
on repeat: What is the issue that you are having?
on repeat: Would you like me to have a support staff contact you?

question: goodbye
response: Before you go, would you like to take a survey?
no repeat:

question: goodbye
response: Goodbye.

condition:

Conditions let you enter Self code that must evaluate to true for the response to be used. This is an advanced properties as it

requires you understand Self (a dialect of JavaScript), but can be used to do very powerful things.

// Response to goodbye differently based on the time of day.
question: goodbye
response: Goodnight.
condition: Date.get(#hour, Date.time()) > 18

question: goodbye
response: Goodbye.

think:

Think let you enter Self code that is executed when the response is used. This is an advanced properties as it requires you

understand Self (a dialect of JavaScript), but can be used to do very powerful things.

// Track the user's name.
pattern: my name is *
template: Pleased to meet you {star}.
think: speaker.name = star;

question: what is my name
template: Your name is {speaker.name}.

question: can we change the subject
response: Sure, what would you like to talk about?
think: conversation.topic = null;

confidence:

You can enter multiple responses for the same question. The bot will use the response that it is the most confident in for the current

conversational context. By default a response is given a confidence level of 90%, but you can customize the value. Note that in a

group discussion such as when the bot is added to a chatroom, or on Twitter, the bot will only use responses that have >=90%

confidence.

sentiment:

You can associate a user question or phrase, or individual words with sentiment (good vs bad). Sentiment can be used to track how

the user is feeling about the current conversation. The sentiment statistic is tracked by your bot daily and can be graphed from its

Analytics page.

question: thank you
response: You are most welcome.
keywords: thank
sentiment: good

question: you suck
response: Sorry, I am doing my best. Would you like me have someone contact you via email?
keywords: suck
sentiment: bad

word: suck
sentiment: bad

word: great
sentiment: great

Next and Conversation Flows
Next questions in a response can be used to handle follow-up questions and conversation flows. To start a conversation flow, indent

the next follow-up question to the response. You can use tabs or 4 spaces for indents. You can also indent multiple levels to define a

conversation tree.

A respones next question defines an isolated conversation space. The bot will only choose its next response from the provided

responses. To define a default response use the default: tag. If the bot cannot match the user's question with a next question, it will

search the responses parent, otherwise use the bot's default response.

Next is similar to previous, but unlike previous is isolated to the response. In the context of a next response, the bot will never use

any of its responses outside the context of the next response. This makes is easy to define isolated and nested conversations.

question: help
response: Do you want help with <button>web</button> or <button>mobile</button>
keywords: help

question: web
response: Is you issue with <button>HTML</button> or <button>JavaScript</button>?

question: html
response: See https://www.w3schools.com/html

question: javascript
response: See https://www.w3schools.com/js

question: mobile
response: Are you using <button>Android</button> or <button>iOS</button>?

question: android
response: See https://www.android.com

question: ios
response: See https://developer.apple.com/ios

question: quit
response: Okay. Let me know if you need further help.

default: Please specify <button>web</button> or <button>mobile</button>, or type
<button>quit</button> if you do not need help.

Greetings
A greeting is the bot's first response in a new conversation. Greetings can have most of the same tags as responses. To define a

greeting the greeting: tag is used.

greeting: Welcome to my website. I am Julie, how may I be of service?

Default Responses
If the bot does not find any good matching question to a user's input, it uses its default response. Default responses can have most of

the same tags as responses. To define a default response the default: tag is used.

default: Sorry, I do not understand.

default: Sorry, I do not understand. Please email sales@acme.com for more information.
topic: Sales

Phrases
Phrases can be defined to associate sentiment, emotions, action, or poses to a phrase.

thanks for the help
sentiment: good

you are not helping me
sentiment: bad

Words
Word can be defined to associate sentiment, emotions, and synonyms. A word can also be a keyword, a topic, or an exclusive topic.

word: good
sentiment: good
synonyms: great wonderful cool amazing

word: bad

sentiment: bad
synonyms: sucks terrible horrible

word: aiml
keyword: true
topic: true

Word Tags

Tag Description

word: Define a word.

sentiment: Optionally you can associate a sentiment with the word.

emotions: Optionally you can associate an emotion with the word.

keyword: Define the word to be a keyword.

synonyms: Optionally you can give a synonym to the word, so that similar words in a question to trigger the same response.

topic: Define the word to be a topic.

exclusive topic: Define the word to be an exclusive topic.

See Also

• How to train your customer service bot by monitoring its chat logs, using keywords and topics.
• What are the supported response and chat log formats for importing and exporting?
• What are topics?
• What are labels, and how to reuse responses?
• What are previous responses?
• What are required words?
• What are keywords?

Self
Overview
Self is Bot Libre's JavaScript dialect that has been extend to support natural language processing. You can program your bot using

the Self scripting language from your bot's Script page. You can also use Self from response templates, thinks, and conditions, and

from the AIML "self" tag.

The Self scripting language is a state machine based language for scripting chat bots, it also enables bots to alter and program their

own scripts.

Classes

Class Description

Object Self defines several object method available to all objects.

String String processing methods.

Array Array processing methods.

Language Natural language processing methods.

Date Date and time processing methods.

Utils Common utility methods.

Math Math operations.td>

Http HTTP, HTML, XML, JSON and web service processing methods.

JSON JSON processing methods.

Facebook Facebook methods.

FacebookMessaging Facebook messaging methods.

Twitter Twitter messaging methods.

Telegram Telegram messaging methods.

Email Email methods.

Twilio Twilio & SMS methods.

Vision Image and vision messaging methods.

Context Context access methods.

Avatar Avatar, emotion, poses, action, and command accessing methods.

Mood Mood and emotion methods.

Operators

Operators Description Example

if If statement. if (value == null) { ... } else { ... }

for For statement. for (word in sentence.word) { ... }

while While statement. while (count < 10) { ... }

do Do statement. do { ... }

think The same as do but can be used inside a Template to perform some code but not print a value into
the response.

think { ... }

return Return the value. if (word == "hello") { return "hello there"; }

== Compare if two values match. apple == apple

!= Compare if two values don't match. apple != orange

< Compare if a value is less than another. if (time < 10) { greeting = "Good Morning!"; }

<= Compare if a value is less or equal than another. if (time <= 12) { greeting = "Have a Nice Day!"; }

> Compare if a value is greater than another. if (time > 12) { greeting = "Good Afternoon!"; }

>= Compare if a value is greater or equal than another. if (time >= 5) { greeting = "Nice Day!"; }

! negates a logical value negative = !negative;

&& Logical AND. if (x < 5 && y > 2) { ... }

|| Logical OR. if (x < 5 || y > 1) { ... }

= Variable assignment. name = "Alice";

++ Increment a variable. var step; for (step = 0; step < 5; step++) { ... }

-- Decrement a variable. var step; for (step = 10; step < 5; step--) { ... }

+ Add two numbers or concatenate two strings. txt1 = "John"; txt2 = "Smith"; txt3 = txt1 + " " + txt2;

- Subtract two numbers. var x = 5; var y = 2; var z = x - y;

* Multiply two numbers. var x = 5; var y = 2; var z = x * y;

Operators Description Example

/ Divide two numbers. var x = 10; var y = 2; var z = x / y;

new Construct a new object. response = new Sentence();

Symbol Create a new global symbol. Language.define(word, Symbol(word));

. Get a relationship from an object. age = speaker.age;

= Set a relationship on an object. response.word[0] = "Hello";

=+ Add a relationship on an object. sentence.response =+ response;

=- Remove a relationship on from object. sentence.response =- response;

random Select and execute random value. random("Hello", "Hi", "Hey", "G'day mate");

redirect Evaluate the response to the phrase. redirect("what is " + star);

srai Synonym for redirect (AIML syntax). srai("hello");

request Evaluate the response to the phrase using a remote service. request(song, { service : #wikidata, hint : "performer"));

sraix Synonym for request (AIML syntax). sraix(song, { service : #wikidata, hint : "performer"));

learn Learn a new response. learn({pattern:"hello", template:"how are you" });

eval Evaluate code within a learned pattern or template. learn({pattern:Pattern("what is {eval (star[0])}"), template:Template("{eval (star
[1])}") });

debug Print the arguments to the log. debug(star); debug (#error, error)

Object

Object Methods Description Example

add(key, value) Add a relationship value to the object. speaker.add(#name, "Bob")

all(key) Returns an array of all of the object's relationship values for the type. speaker.all(#name)

addWithMeta(key, vale, metaType, meta) Add a relationship value to the object with the relationship meta data.

append(key, value) Append the value to the end of the object's relationship. response.append(#word, ".")

appendWithMeta(key, vale, metaType, meta) add a relationship value to the object with the relationship meta data

copy() Return a shallow copy of the object. object.copy()

dataType() Return the primitive data-type of the object or null. object.dataType() == #String

delete() Delete the object, (use this with caution). object.delete()

delete(key, value) Delete the relationship. object.delete(#type, value)

deleteAll() Delete all relationships. object.deleteAll(),

deleteAll(key) Delete all the relationships of the type. object.deleteAll(#type),

findReference() Inverse references lookup. Returns first reference.

findReferenceBy(key) Inverse relationship lookup. Returns first reference.

findReferences() Inverse references lookup. Returns array of objects.

findReferencesBy(key) Inverse relationship lookup. Returns array of objects.

get(key) get(key, index) Get a relationship value from an object, optional index. speaker.get(#name), sentence.get(#word, 3)

getAccessCount() Return the object's access count. object.getAccessCount() > 100

getAccessDate() Return the object's access date. object.getAccessDate()

getAccessDate(key, value) Return the relationship's access date. object.getAccessDate(#type, value)

getConsciousnessLevel() Return the object's consciousness level. object.getAccessDate()

getConsciousnessLevel(key, value) Return the relationship's consciousness level. object.getAccessDate(#type, value)

getCorrectness(key, value) Return the relationship's correctness. object.getCorrectness(#type, value)

getCreationDate() Return the object's creation date. object.getCreationDate()

getCreationDate(key, value) Return the relationship's creation date. object.getCreationDate(#type, value)

getGroupId() Return the object's group id. object.getGroupId()

getId() Return the object's unique id. object.getId()

getId(key, value) Return the relationship's unique id. object.getId(#type, value)

getIndex(key value) Return the relationship's index. list.getIndex(#element, value)

getKey(value) Return the related objects relationship key. object.getKey(value)

getLast(key) getLast(key, start) Get a relationship value from the end of an ordered relationship. conversation.getLast(#input, 1)

getName() Return the object's primitive name. object.getName()

getWithAssociate(key, associate, associateType) Get a relationship value from an object most associate to the other value.

has(key, value) Return if the relationship exists. speaker.has(#name, "Bob")

hasAny(key) Return if the object has any relationship of the type. object.hasAny(#type)

hasData() Return if the object has primitive data (String, Number, Date, etc.). object.hasData()

hasMeta(key, value) Return if the relationship has a meta value. object.hasMeta(#type, value)

isArray() Return if the object is an array. object.isArray()

isPinned() Return if the object is pinned. object.isPinned()

Object Methods Description Example

isPinned(key, value) Return if the relationship is pinned. object.hasMeta(#type, value)

isSymbol() Return if the object is a primitive symbol. object.isPrimitive()

keys() Return an array of the object relationship keys. for (key in object.keys()) { .. }

meta(key, value) Return the relationship's meta value. object.meta(#type, value)

pin() Pin the object. object.pin()

pin(key, value) Pin the relationship. object.pin(#type, value)

random(key) Return a random element of the relationship type. object.random(#type)

remove(key, value) Remove the relationship value (this creates an inverse relationship). speaker.remove(#name, "Bob")

removeWithMeta(key, value, metaType, meta) Remove the relationship value with the relationship meta data.

set(key, value) set(key, value, index) Sets a relationship value on an object. speaker.set(#age, 44)

setCorrectness(key, value, value) Sets a relationship value on an object. speaker.setCorrectness(#gender, #male, 0.5)

size(key) Returns the number of relationships of the type. object.size(#type)

toJSON() Convert the object to a JSON string. object.toJSON()

toXML() Convert the object to an XML string. object.toXML()

toString() Convert the object to string. object.toString()

unpin() Unpin the object. object.unpin()

unpin(key, value) Unpin the relationship. object.unpin(#type, value)

weakAdd(key, value) Add a relationship value to the object with a low correctness.

weakAddWithMeta(key, value, metaType, meta) Add a relationship value to the object with a low correctness with the relationship meta data.

String

String Methods Description Example

charAt(index) Return the string's character at the index. "hello".charAt(0) == "h"

concat(text) Concatenate the two strings. "hello".concat(" world!") == "hello world!"

endsWith(text) Return if the string ends with the text. "hello world".endsWith("world") == true

exec(text) Convert the string to a regex pattern and evaluates if it matches the text and return the text match. "/\d+".exec("123") == "123"

indexOf(text) Return the index of the substring or -1 if missing. "hello world".indexOf("hello") == 0

lastIndexOf(text) Return the last index of the substring or -1 if missing. "hello world hello".indexOf("hello") == 12

length() Return the string's length. "hello".length() == 5

match(text) Convert the string to a regex pattern and return an array of all matching values. "/\d+".exec("123 plus 456") == ["123" "456"]

replace(token, text) Replace all occurances of the token string with the text. "hello world".replace("hello", "goodbye") == "goodbye world"

setCharAt(index, char) Return a string with the string's character at the index. "hello".setCharAt(0, "H") == "Hello"

size() Return the string's length. "hello".size() == 5

startsWith(text) Return if the string starts with the text. "hello world".startsWith("hello") == true

substr(start, end) Return the string substring. "hello world".substr(0, 4) == "hell"

substring(start, end) Return the string substring. "hello world".substring(0, 4) == "hell"

test(text) Convert the string to a regex pattern and return if it matches the text. "/\d+".test("123") == true

toLowerCase() Return the string as lower case. "HELLO".toLowerCase() == "hello"

toUpperCase() Return the string as upper case. "hello".toUpperCase() == "HELLO"

toNumber Convert the string to a number. "123.4".toNumber()

toSymbol Convert the string to a primitive symbol. "topic".toSymbol()

trim() Trim leading and trailing whitespace. " Hello World! ".trim() == "Hello World!"

Array

Array Methods Description Example

add(value) Add the value to the end of the array's elements. array.add("hello")

delete(value) Delete the value from the array's elements. array.delete("hello")

has(value) Return if the array contains the element. array.has("hello")

indexOf(value) Return the index of the element in the array. array.indexOf("hello")

indexOf(value, start) Return the index of the element in the array starting at the index. array.indexOf("hello", 4)

lastIndexOf(value, start) Return the index of the element in the array starting at the end. array.lastIndexOf("hello")

length() Return the arrays length. [1, 2, 3].length() == 3

random() Return a random element of the array. array.random()

size() Return the arrays length. [1, 2, 3].length() == 3

Language

Language Methods Description Example

word(text*) Creates a compound word. Language.word("ball", "hockey")

sentence(text*) Creates a sentence. Language.sentence("How", "are", "you")

define(text, object) Defines the word as meaning the value. Language.define("foobar", #foobar)

Date

Date Methods Description Example

date() Current Date object. var today = Date.date();

date(text) Convert the text or Timestamp to a Date. var xmas = Date.date("2017-12-25");

time() Current Time object. var time = Date.time();

time(text) Convert the text or Timestamp to a Time. var noon = Date.time("12:00:00");

timestamp() Current Timestamp object. var now = Date.timestamp();

timestamp(text) Convert the text or Date to a Timestamp. var timestamp = Date.timestamp("2017-10-02
16:52:30");

any(text) Parse any date/time format. var name = Date.parse("Sept 3, 2014")

add(date, part, time) Add the date value (#day, #month, #year, #hour, #minute, #second, #millisecond). var tomorrow = Date.add(Date.date(), #day, 1);

get(date, part) Return the date part (#day, #month, #year, #hour, #minute, #second, #millisecond). var day = Date.get(Date.date(), #day);

set(date, part, value) Set the date part (#day, #month, #year, #hour, #minute, #second, #millisecond). var day = Date.set(Date.date(), #day, 11);

difference(from, to,
part)

Compute the date/time difference from date part (#day, #month, #year, #hour, #minute, #second, #millisecond). var days = Date.difference(Date.date(), Date.date
("2017-12-25"), #day);

interval(part, from, to) Compute the date/time interval from date/time formatted strings ("days", "months", "years", "hours", "minutes",
"seconds", "milliseconds").

var days = Date.interval("days", "2017-11-20", "2017-
12-25")

interval(part, from, to,
format)

Compute the date/time interval from date/time Java SimpleDateFormat formatted strings ("days", "months",
"years", "hours", "minutes", "seconds", "milliseconds").

var days = Date.interval("days", "2017-11-20", "2017-
12-25", "yyyy-MM-dd")

getTimeZone() Return the default time zone. var gmt = Date.getTimeZone();

getTimeZone(zone) Return the timezone object based on its timezone code i.e. "GMT", "GMT-5", "PST", "America/Los_Angeles". var gmt = Date.getTimeZone("GMT");

setTimeZone(date,
timezone)

Set the dates time zone based on its timezone code i.e. "GMT", "GMT-5", "PST", "America/Los_Angeles". var est = Date.setTimeZone(Date.date(), "EST");

printAIMLDate(date,
format)

Print the date using the AIML format.

printDate(date, format) Print the date using Java SimpleDateFormat format. var dateString = Date.printDate(Date.date(), "yyyy-MM-
dd")

Utils

Util Methods Description Example

encode(text) Converts to URL encoded character. Http.requestXML("http://api.com/fetch?name=" + Utils.encode(name))

denormalize(text) Converts punctuation words back to characters. Utils.denormalize("That is cool colon) at dash at") == "That is cool :) @-@"

normalize(text) Converts punctuation characters to the word values. Utils.normalize("That is cool :) @-@") == "That is cool colon) at dash at"

explode(text) Expands a string to its character values. Utils.explode("hello") == "h e l l o"

extract(text, pattern) Convert the pattern to a regex pattern and extracts the matching string from the text. Utils.extract("the cost is $123", "/\d+") == "123"

matches(text, pattern) Convert the pattern to a regex pattern and returns if the text matches. Utils.matches("123", "/\d+") == true

gender(text) Converts between 'he' and 'she'. Utils.gender("he likes her") == "she likes him"

person(text) Converts between 1st and 2nd person. Utils.person("I love myself") == "you love yourself"

person2(text) Converts between 1st and 3rd person. Utils.person2("I love myself") == "he love himself"

capitalize(text) Converts the first character to upper case. Utils.capitalize("hello there") == "Hello there"

sentence(text) Converts the first character to upper case. Utils.sentence("hello there") == "Hello there"

formal(text) Converts the first character to upper case for each word. Utils.formal("hello there") == "Hello There"

lowercase(text) Converts to lower case. Utils.lowercase("HELLO There") == "hello there"

uppercase(text) Converts to upper case. Utils.uppercase("hello there") == "HELLO THERE"

program() Returns the current software name and version.

size() Returns to total knowledge base size (total objects).

version() Returns the current software version.

id() Returns the bot's internal id.

Math

Math Methods Description Example

add(x, y) Sum of x and y values. Math.add(2, 3); 5

subtract(x, y) Subtract y from x value. Math.subtract(8, 5); 3

multiply(x, y) Multiply x and y values. Math.multiply(2, 4); 8

divide(x, y) Divide x and y values. Math.divide(18, 9); 2

abs(x) Returns the absolute value of x. Math.abs(-7.7); 7.7

floor(x) Returns the value of x rounded down to its nearest integer. Math.floor(3.8); 3

ceil(x) Returns the value of x rounded up to its nearest integer. Math.ceil(2.2); 3

power(x, y) Returns the value of x to the power of y. Math.power(7, 2); 49

round(x) Returns the value of x rounded to its nearest integer. Math.round(4.3); 4

log(x) Math.log(8); 3

ln(x)

sin(x) Returns the sine of x (x is in radians). Math.cos(0); 1

asin(x)

cos(x) Returns the cosine of x (x is in radians).

acos(x)

tan(x) Returns the tangent of an angle.

tanh(x)

Http

Http Description Example

toJSON(object) Convert an object to JSON text.

toXML(object) Convert an object to XML text.

encode(text) URL encode the text.

requestJSON(url) Fetch the JSON response.

requestJSON(attribute, url) Fetch the JSON response.

requestJSON(attribute, url, headers) Fetch the JSON response. Pass custom headers as JSON object.

requestJSONAuth(attribute, url, user, password) Call authenticated API and fetch the JSON response.

requestXML(url) Fetch the XML response.

requestXML(url, xpath) Fetch the XML response.

requestXML(url, xpath, headers) Fetch the XML response. Pass custom headers as JSON object.

requestXMLAuth(url, user, password, xpath) Call authenticated API and fetch the XML response.

requestHTML(url, xpath) Scrape the HTML page.

requestHTML(url, xpath, format) Scrape the HTML page, return #text, #array, #html, or #object.

requestHTML(url, xpath, format, subformat) Scrape the HTML page, return #array of #text, #html, or #object.

requestCSV(url) Parse the CSV file.

requestText(url) Return the raw text data.

requestText(url, headers) Return the raw text data. Pass custom headers as JSON object.

rss(url) Fetch the last RSS feed.

rssFeed(url) Fetch the entire RSS feed.

postJSON(url, object) Post the JSON object to the URL.

postJSONAuth(url, user, password, object) Post the JSON object to the URL.

postXML(url, object) POST the XML object to the URL.

postXML(url, object, xpath) POST the XML object to the URL. Extract the XPath data.

postXMLAuth(url, user, password, object, xpath) Post the XML object to the URL. Extract the XPath data.

postHTML(url, params, xpath) Post the HTML form parameters to the URL. Extract the XPath data.

putJSON(object) PUT the JSON object to the URL.

delete(url) Send an HTTP DELETE to the URL.

JSON

JSON Description Example

parse(text) Parse an object from JSON text.

stringify(object) Convert an object to JSON text.

Facebook

Facebook Description Example

post(message) Post to the bot's Facebook page.

postComment(comment, postid) Post to the bot's Facebook page.

sendMessage(message, userid) Send a message to a user.

FacebookMessaging Description Example

sendMessage(message, userid) Send a message to a user.

sendMessage(message, userid, command) Send a message to a user with a custom Facebook quick_reply or attachment command.

Twitter

Twitter Description Example

tweet(message) Tweet to the bot's Twitter account.

sendMessage(message, userid) Send a direct message to a user.

Telegram

Telegram Description Example

post(message) Post to the bot's Telegram channel.

sendMessage(message, userid) Send a message to a user.

sendMessage(message, userid, command) Send a message to a user with a Telegram custom keyboard reply_markup command.

postJSON(url, json) Call a Telegram bot API with the JSON parameter.

Email

Email Description Example

email(address, subject, message) Send an email from the bot's email account. Email.email("joe@foo.com", "Welcome", "Thanks for registering.")

Twilio

Twilio Description Example

sms(number, message) Send a SMS messages from the bot's Twilio account. Twilio.sms("613-123-4567", "Escalation alert")

Vision

Vision Description Example

loadImage(url) Load the image into the bot's memory.

matchImage(url, tag, error) Search for the closest matching image for the tag.

Context

Context Description Example

push(object) Push the object to the current context stack.

top() Return the top of the context stack.

top(index) Return the nth top of the context stack.

search(match) Search the context stack for a matching object.

Avatar

Avatar Description Example

setAction(action) Set the avatar's action.

setPose(pose) Set the avatar's pose.

setCommand(command) Set a JSON command object.

Mood

Mood Description Example

setEmotion(emotion, value) Set the value of the emotion (between -1.0 and +1.0). Mood.setEmotion(#Happiness, 1.0)

State Operations

State
Operation

Description Example

state A state defines the current input processing. pattern "my name is *" template Template("Pleased to meet you {star}");

case A case can transition to another state if the case variable matches the
current input.

case "lol" template "Very funny."

pattern A pattern can match an input and evaluate a template response. pattern "hello" template "Hi there";

answer An answer of a state is evaluated if the input processing is complete. answer Template("Pleased to meet you {star}");

function An function can be called from an answer or another function. function todayResponse() { var response = new (#sentence); response.append(#word, "Hello World!");
return response; }

var A variable can be matched with the current input, or store context. var name { instantiation : #name; }

Pattern Operators

Operator Description

* Matches one or more words.

_ Matches one or more words, takes priority over all other words and wildcards, except $.

^ Matches zero or more words.

Matches zero or more words, takes priority over all other words and wildcards, except $.

$ Pattern priority marker to make a pattern word match highest priority.

() Optional set of words.

[] Required set of words.

<set> Set tag to evaluate a pattern based on words defined in a predefined set.

/ Regular expression pattern.

{} Self code.

Examples

Here example of a Self script that counts words:

Here example of a Self script that repeat words:

// Example script that counts words.
state CountWords {

pattern "count words in *" answer countWords();

function countWords() {
var words = Language.sentence(star);
var count = 0;
for (word in words.word) {
 count = count + 1;

 }
return Template("There are {count} words.");

 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

1
2
3

Here example of a Self script that access an XML web API:

Here example of a Self script that uses patterns to perform math:

The state machines are more complex, but allow you to parse arbitrarily complex expressions. Here example of a Self script use a
state machine and variables for processing addition:

See Also

• Introducing the Self Scripting Language
• What classes are supported in Self

// Example script that repeat words.
state Repeat {

pattern "repeat * by * times" answer repeat();

function repeat() {
var response = "";
var repeat = star[1].toNumber();
var count = 0;
while (count < repeat) {
 response = response + " " + star[0];
 count = count + 1;

 }
return response;

 }
}

// This script searches Wikipedia using an XML HTTP request and an XPath expression to scrape the description text.
state SearchWikipedia {

pattern "what is *" answer search();

function search() {
return Http.requestXML("https://en.wikipedia.org/w/api.php?action=opensearch&format=xml&limit=1&search="

 }
}

// Script for understanding simple math using patterns.
state SimpleAddition {

pattern "* + *" answer (Math.add(star[0].toNumber(), star[1].toNumber()));
pattern "* - *" answer (Math.subtract(star[0].toNumber(), star[1].toNumber()));
pattern "* / *" answer (Math.divide(star[0].toNumber(), star[1].toNumber()));
pattern "* x *" answer (Math.multiply(star[0].toNumber(), star[1].toNumber()));

}

// Language state machine for understanding simple {x+y} addition.
state SimpleAddition {

// This line is required for any state processing to process each word in the input phrase.
case input goto sentenceState for each #word of sentence;

state sentenceState {
case left goto numberState;

// The left variable is a stand-in for any word that represents a number, the 'number' variable will be assign the value of the number.
// The meaning is required because in Self words are just words that represent an object which is the meaning of the word, multiple words can have the same meaning.
var left {
 meaning : number;

 }
var number {
 instantiation : #number;

4
5
6
7
8
9

10
11
12
13
14
15

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

 





 

AIML
Overview
AIML is the Artificial Intelligence Markup Language. It is an XML standard for defining chat bot responses. Bot Libre bots support

AIML, but are based on Self and have a knowledge base similar to the human brain.

About AIML
AIML defines how a bot should respond to a question using <pattern> and <template> elements. A pattern represents the user's

question, and the template defines the bot's response. The pattern and template elements are grouped in a category element, which

can be grouped under topic elements.

List of AIML template tags

Tags Description

<star index="N"/> Replaced with value of * in pattern (or Nth *).

<that index="M,N"/> Replaced with value of bot's previous response (or Mth previous response, and N sentence of the response).

<input index="N"/> Replaced with value of users's input (or Nth *).

<thatstar index="N"/> Replaced with value of * in "that" (or Nth *).

<topicstar index="N"/> Replaced with value of * in topic (or Nth *).

<get name="XXX"/> Replaced by the value of the conversation specific variable.

<bot name="XXX"/> Replaced by the value of the bot specific variable.

<sr/> Short form for <srai><star/><srai> (replaced with response to value of * from pattern).

<person2/> Converts the text (or <star/>) between 1st and 2nd person (I <-> he, etc.).

<person/> Converts the text (or <star/>) between 1st and 3rd person (I <-> you, etc.).

<gender/> Converts the text (or <star/>) between male and female (he <-> she).

<date/> Replaced with the current date and time, a "format" attribute is also supported.

<id/> Replaced by the client id.

<size/> Replaced with the size of bot's memory.

<version/> Replaced with the AI engine version.

<uppercase> Converts the text to uppercase.

<lowercase> Converts the text to lowercase.

<formal> Converts all words in the text to be capitalized.

<sentence> Converts the first word in the text to be capitalized.

<condition name="X" value="Y"> Defines an "if" condition based on comparing the value of a variable to a pattern.

<condition name="X"> Case statement.

<condition> Multi-valued if/else statement.

<random> Choose on of the nested values at random.

<li name="X" value="Y"> Used in random and condition tags.

<li value="Y"> Used in random and condition tags.

 Used in random and condition tags.

<set name="XXX"> Set the value of a variable.

<gossip> Logs the text.

<srai> Recursively evaluates the text and replaces it with the response.

<think> Evaluates the nested statements but does not output any result.

<learn> Load external AIML file, this is not currently allowed.

<system> Executes a OS command, this is not currently allowed.

<javascript> Executes JavaScript code.

<topic> Category topic tags can now be set on a category to make it easier to add categories to topics.

<map> Maps tag to allow the lookup of the element value in a predefined mapping, returning the mapped value.

<loop> Condition loops tag to loop a conditional statement.

<var> Local variables attribute for variables scoped to a category.

<sraix> Remote requests tag to make a remote request of another bot instance, or service.

<normalize> and <denormalize> Normalization and denormalization tags to convert special character into words, and back again.

<request> Request tag to return the user's previous input request.

<response> Response tag to return the bot's previous response.

<learn>, <learnf>, and <eval> Learning tags to dynamically train a bot with new responses.

<explode> Explode tag to split a word into its characters.

<oob> Mobile (out of band) tag to support client and mobile device commands.

(, <a>, <i>, , , , <p>,
, <button>, , <video>) Various HTML tags are also allowed.

<self> Evaluate Self code (Bot Libre extension).

Tags Description

List of AIML pattern operators

Tags Description

* Matches one or more words.

_ Matches one or more words, takes priority over all other words and wildcards, except $.

^ Matches zero or more words.

Matches zero or more words, takes priority over all other words and wildcards, except $.

$ Pattern priority marker to make a pattern word match highest priority.

() Optional set of words (Bot Libre extension).

[] Required set of words (Bot Libre extension).

<set> Set tag to evaluate a pattern based on words defined in a predefined set.

/ Regular expression pattern (Bot Libre extension).

{} Self code (Bot Libre extension).

Examples

Here is a simple 'Hello World' AIML example:
This code will make your bot respond with 'Hello to you too' to the question 'Hello World'.

Here is a simple wildcard example:
This code will make your bot respond with 'Hello to you too' to any question containing the word 'hello'.

Here is a joke 'that' example:
This code will make your bot tell a joke.

<aiml>
<category>

<pattern>HELLO WORLD</pattern>
<template>Hello to you too</template>

</category>
</aiml>

<aiml>
<category>

<pattern>* HELLO *</pattern>
<template>Hello to you too</template>

</category>
</aiml>

<aiml>
<category>

<pattern>TELL ME A JOKE</pattern>
<template>Why did the chicken cross the road?</template>

</category>
<category>

<pattern>* WHY *</pattern>
<that>Why did the chicken cross the road?</that>
<template>To get to the other side.</template>

</category>
</aiml>

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8
9

10
11
12

Here is a complex template example:
This code will make your bot respond to the question 'Do you like apples or do you like oranges' with 'I love apples and I love
oranges'.

^ and # Wildcards

$ Priority

() and [] Lists

Regular expressions

<aiml>
<category>

<pattern>* OR *</pattern>
<template><srai><star/></srai> and <srai><star index="2"/></srai></template>

</category>
<category>

<pattern>DO YOU LIKE *</pattern>
<template>I love <star/></template>

</category>
</aiml>

<category>
<pattern>^ aiml ^</pattern>
<template>AIML is cool.</template>

</category>

<category>
<pattern>^ chat bot^</pattern>
<template>Yes, I am a chat bot.</template>

</category>

<category>
<pattern># sex #</pattern>
<template>I'm not that kind of bot.</template>

</category>

<category>
<pattern>$what is your sex</pattern>
<template>I am female.</template>

</category>

<category>
<pattern>do [you u] (really) [like love luv lv] me</pattern>
<template>Yes, I love you.</template>

</category>

1
2
3
4
5
6
7
8
9

10
11

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5

1

 

Sets

AIML template to set a knowledge object's type:

Pattern tags

Attributes as Elements

<category>
<pattern>my email is /.+\@.+\..+</pattern>
<template>That is a valid email</template>

</category>

<category>
<pattern>I am <set>name</set></pattern>
<template>Pleased to meet you <star/>.</template>

</category>

<category>
<pattern><set>number</set> + <set>number</set></pattern>
<template><srai>addition <star/> <star index="2"/></srai></template>

</category>

<category>
<pattern>load animals</pattern>
<template>

<think>
<map name="meaning" value="dog">dog</map><map name="instantiation" value
<map name="meaning" value="dog">doggy</map>
<map name="meaning" value="cat">cat</map><map name="instantiation" value

</think>
</template>

</category>

<category>
<pattern><bot name="name"/></pattern>
<template>Yes, that's my name.</template>

</category>

<category>
<pattern>I am </pattern>
<template>That is my age too.</template>

</category>

<category>
<pattern></pattern>
<template>You are repeating yourself.</template>

</category>

<category>

2
3
4
5

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10
11

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9

10

 





Maps

Bot Libre extends the map operation to also allow setting the map value. This will set the value of a relationship on the knowledge
object.

Conditions and Loops

Learning

<category>
<pattern>My * is *</pattern>
<template>I will remember that your <star/> is <star index="2"/><think><set><name><star/></name><star index="2"/></set></think></template>

</category>

<category>
<pattern>What is my *</pattern>
<template>Your <star/> is <get><name><star/></name></get></template>

</category>

<category>
<pattern>what is the capital of <set>country</set></pattern>
<template>The capital of <star/> in <map name="capital"><star/></map>.</template>

</category>

<category>
<pattern>the opposite of * is *</pattern>
<template>Okay, the opposite of <star/> is <star index="2"/>.

<think><map name="opposite"><value><star index="2"/></value><star/></map></think>
</template>

</category>

<category>
<pattern>what is the opposite of *</pattern>
<template>the opposite of <star/> is <map name="opposite"><star/></map>
</template>

</category>

<category>
<pattern>count down from <set>number</set></pattern>
<template>
<think><set var="count"><star/></set></think>
<condition var="count">

<li value="5"><think><set var="count">4</set></think>5 <loop/>
<li value="4"><think><set var="count">3</set></think>4 <loop/>
<li value="3"><think><set var="count">2</set></think>3 <loop/>
<li value="2"><think><set var="count">1</set></think>2 <loop/>
<li value="1"><think><set var="count">0</set></think>1

</condition>
</template>

</category>

<category>

<category>
<pattern>learn question * answer *</pattern>
<template>
<think>

<learn>
<category>

<pattern><eval><star/></eval></pattern>
<template><eval><star index="2"/></eval></template>

</category>
</learn>

</think>
 Okay, I will answer "<star index="2"/>" to "<star/>" next time

</template>
</category>

<category>

1
2
3
4
5

1
2
3
4
5
6
7
8
9

10
11
12
13

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

 

 

 





 





Sraix

Self

See Also

• Scripting your bot with AIML
• What's new in AIML 2.0

<category>
<pattern>ask * about *</pattern>
<template><star/> says "<sraix default="Timeout or max anonymous API calls exceeded"

</category>

<category>
<pattern>ask pandorabot * about *</pattern>
<template><star/> says "<sraix server="http://www.pandorabots.com" default="Timeout or max anonymous API calls exceeded"

</category>

<category>
<pattern>ask pandorabot chomsky about *</pattern>
<template>He says "<sraix server="http://www.pandorabots.com" botid="b0dafd24ee35a477"

</category>

<category>
<pattern>what is * + *</pattern>
<template><star index="1"/> + <star index="2"/> = <self>star + star</self></template>

</category>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1
2
3
4
5





 

 

Regular Expressions (Regex)
Overview
Bot Libre supports using Regular Expressions in patterns, templates, and scripts.

Regular Expressions, or Regex defines a pattern syntax for parsing text. Unlike AIML and Bot Libre patterns Regex patterns are

character based, not word base, so can match specific types of words and word sequences such as numbers, dates, times, currency,

and others.

For example, the following regex matches a number,

/\d+

and this regex would match a date,

/^(19|20)\d\d[-/.](0[1-9]|1[012])[-/.](0[1-9]|[12][0-9]|3[01])$

Bot Libre allows regex expressions to be used in AIML patterns, and in Bot Libre response patterns. Bot Libre's scripting language

Self also allows regex in patterns and provides extractor functions that allow regex to be used to extract data from a user's input.

To define a regex pattern in an AIML or Bot Libre pattern just start the regex with the "/" character.

AIML
AIML defines pattern wildcards such as * and ^ which can match multiple words in a phrase, but they will match any word, and are

not restricted to specific types of words. Bot Libre lets you include regex inside AIML patterns to match specific types of words. Just

like the * wildcard the word that was matched by the regex can be accessed in the template using the <star/> tag.

<category>
 <pattern>my email is /.+\@.+\..+</pattern>
 <template>Okay, I will email you at <star/></template>
</category>

Normally regex is used to match a specific word, but you can also use regex to match and entire phrase if it defines the entire

pattern.

For this to work the entire pattern must be the regex, and the pattern can have no other words. The "()" characters in regex define a

group which becomes the star variable(s).

<category>
 <pattern>/(?i)what\sis\s(.*)</pattern>
 <template>I have no idea what <star/> is.</template>
</category>

Patterns
Patterns and regex can also be used in Bot Libre response lists similar to AIML.

Pattern("my email is /.+\@.+\..+")
Template("Okay, I will email you at {star}")

Pattern("/(?i)what\sis\s(.*)")
Template("I have no idea what {star} is.")

In a response list template you can also use Self extractor functions.

I am 22 years old
Template("I will remember that you are { var age = sentence.exec("\d+"); speaker.age = age; age } years
old.")

Self
Regex can also be used in Self patterns and functions.

state Math {
 pattern "^ /\d+ * /\d+ ^" template "{star[1].toNumber() * star[2].toNumber()}";

 pattern "^ /\d+ / /\d+ ^" template "{star[1].toNumber() / star[2].toNumber()}";
 pattern "^ /\d+ \+ /\d+ ^" template "{star[1].toNumber() + star[2].toNumber()}";
 pattern "^ /\d+ \- /\d+ ^" template "{star[1].toNumber() - star[2].toNumber()}";
}

The following are regex functions in Self:

• Utils.matches(text, regex) - return if the regex matches the text

Utils.matches("12345", "\d+") == true

• String.test(text) - return if the regex string it matches the text

"\d".test("hello 123") == true

• String.exec(text) - extract the subtext matching the regex string from the text

"\d+".exec("hello 123") != "123"

• String.match(text) - returns an array of all values matching the regex string extracted from the text

var values = "hello 123 456".match("\d+"); values[1] == "456"

Bot Libre also defines several symbols for common regex patterns.

These include:

• #number
• #date
• #email
• #url

These symbols can be used in place of regex patterns in Self and patterns.

<category>
 <pattern>my email is #email</pattern>
 <template>Okay, I will email you at <star/></template>
</category>

state Email {
 pattern "^ #email ^" topic "email" template "Thank you, I will remember your email. { think {
speaker.email = Utils.extract(sentence, #email); conversation.topic = null; } }";
 pattern "*" topic "email" template "Please enter a valid email.";
}

See Also

• Parsing natural language using Regular Expression patterns and extractors
• https://www.w3schools.com/jsref/jsref_obj_regexp.asp
• https://regexr.com/

